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Summary The main theme of this review is the importance of a discrete approach to describing
rain at spatial scales comparable to inter-drop separation. We propose that the pair correlation
function should be used to define and measure the texture of rain. To that end, we discuss the
pivotal role of the Poisson process for examining this micro-structure of rain. The importance
of statistical stationarity and the essential distinction between a Poisson distribution and a Pois-
son process are emphasized. It is argued that the correlation-fluctuation theorem (which relates
drop count variance to the pair-correlation function) is ideally suited for scale-dependent explo-
ration of rain micro-structure in the discrete ‘‘shot noise’’ limit. The likelihood of spurious neg-
ative correlations at fine spatial scales is pointed out as instruments are pushed to their
resolution limits. One of the consequences is that possibly spurious Poisson statistics at a given
spatial scale may result from a cancellation on sub-scales. We then proceed to examine implica-
tions of stochastic microstructure and show that the notion of spatially variable and random con-
centration (or size distribution) does not always provide an adequate description of rain texture.
� 2005 Elsevier B.V. All rights reserved.
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In this note, the words ‘‘rain micro-structure’’ are taken to
the extreme of the spatial scales comparable to the mean
separation between raindrops, i.e., down to a few centime-
ters. In this regime, the integral parameters such as liquid
water content or rain rate are not always suitable and one
must pay particular attention to fluctuations caused by
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the discrete nature of rain (similar to ‘‘shot noise’’ in phys-
ics, e.g., Van Kampen (1992)). It is the emphasis on ‘‘the
importance of being discrete’’ which provides a unifying
theme for this note. This is not the first time this issue
has been raised, e.g., see a recent review of the ‘‘large par-
ticle limit in rain’’, (Lovejoy et al., 2003). There, the
authors lament the paucity of studies aimed specifically at
scale-dependence of rain microstructure. We quote (from
Lovejoy et al., 2003):

To date, very few small scale studies have attempted to
systematically consider the statistics as functions of
scale.
.
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1 A single realization of a homogeneous random process, whose
duration is comparable to coherence time, might appear as an
inhomogeneous one and it is, therefore, desirable to secure a much
longer time series.
2 Where we also show that disdrometers are likely to yield

spurious negative correlations when pushed to their resolution
limits.
3 Early experimenters actually used dye paper and flour for drops

size distribution measurements (Marshall and Palmer, 1948).
4 See Chiu (1971); Clarke (1998) for an interesting tale about

Einstein’s view of rain pavement patterns – our inspiration for
Fig. 2.
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We agree. This note is an attempt to address this very
question: scale-dependent texture at short distances. How-
ever, unlike Lovejoy et al. (2003), our goal here is to intro-
duce a route to exploring scale-dependence of spatial
correlations in rain which is free of ad hoc assumptions (un-
like, for example, the fractal assumption, accompanied by
the customary fitting of data to some power law and
extracting a fractal dimension). Our mathematical tools
are supplied by the theory of stochastic point processes
and the approach is free of assumptions about the scaling
of rainfall, except for statistical stationarity (homogeneity)
– ‘‘the first and most common assumption [in hydrology
and other geophysical sciences]’’ Bras and Rodriguez-Iturbe
(1993, p. 4).

From the perspective of random point processes, the
most popular stochastic model for the spatial and temporal
distributions of raindrops and cloud droplets appears to be
that of ‘‘perfect randomness’’ (‘‘ideal gas’’). In fact, phys-
icists and mathematicians outside hydrology and meteorol-
ogy often use rain as a standard of randomness against
which to measure mysterious correlations of the quantum
world. To take but one example, a recent quantum physics
review article by Spence (2002, p. 377) begins thus

6 Like the gentle patter of raindrops, we expect photons,
the quanta of sun-light, to arrive at Earth at random
intervals. . .

Likewise, countless probability texts consider raindrops
striking the roof of a house a classic example of a Poisson
process (e.g., Van Kampen, 1992, p. 34). Evidently, most
physicists and mathematicians outside hydrology are under
the impression that rain is devoid of microstructure. This
is despite: (i) abundant evidence to the contrary provided
by the vast literature on fractal rain characterization
(e.g., see Bras and Rodriguez-Iturbe, 1993; Gupta and Way-
mire, 1990; Lovejoy and Schertzer, 1995; Marsan et al.,
1996; Peters et al., 2002; Vaneziano et al., 1996; Waymire,
1985; Zawadzki, 1995); (ii) everyday observations of
‘‘sheets’’ of rain and other structural elements; (iii) obser-
vations and data analyses based on correlation theory of
random processes (e.g., see Jameson and Kostinski, 1999,
2000). Let us then begin by defining the ‘‘perfect random-
ness’’ model more precisely so that deviations from it
(structure) can be identified.

Poisson process and stochastic structure

Aside from the fractal method, there are two basic ap-
proaches to describing ‘‘structure’’ or ‘‘patterns’’ in ran-
dom phenomena. One method relies on trends attributed
to averages of otherwise random variables while the other
employs the notion of a correlation function in order to de-
scribe a ‘‘degree of order in a sea of randomness’’. We
adopt the latter approach and, rather than dwell on defini-
tions, proceed to an example.

Consider the three panels of Fig. 1 containing point
‘‘events’’ (e.g., raindrops) frozen in time. The patterns,
from left to right, are: perfect spatial randomness (homoge-
neous Poisson process); a clustered or spatially correlated
pattern (homogeneous but not a Poisson process); and ver-
tically stratified randomness (inhomogeneous Poisson pro-
cess). Hence, perfect randomness requires the absence of
T
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‘‘trends’’ as well as the absence of spatial correlations
(e.g., see Shaw et al., 2002, for a tutorial summary in a
meteorological context.) However, also note that the statis-
tical homogeneity by itself need not preclude the existence
of local clusters. For the rest of this paper, we will confine
ourselves to statistically homogeneous (stationary) rain.1

It turns out that the clustered pattern (middle panel of
Fig. 1) can often be understood as a statistically homoge-
neous field of fluctuating local concentration, sometimes
referred to as a Cox or doubly stochastic process (Cox and
Isham, 1980; Sasyo, 1965; Kostinski and Jameson, 1997,
2000). Note, however, that this interpretation requires a
wide separation of the three scales: characteristic length
of concentration variations, the scale on which spatial con-
centration is defined, and the mean inter-particle distance
(e.g., see Friedlander, 2000, p. 7 ). On the other hand, ran-
dom spatial patterns may also be more regular than perfect
randomness (an obvious extreme case being a perfect lat-
tice). The latter possibility can arise via ‘‘anti-clustering’’
caused by mutual particle repulsion such as reported,
e.g., in Brenner (1999). This may also occur in mist, fog or
drizzle where drops go around each other along nearly lam-
inar streamlines – reflected in the raindrop coalescence
efficiency being less than unity (see Chapter 15 of Prupp-
acher and Klett, 1997). Furthermore, raindrops possess def-
inite size which naturally provides a length scale at which to
expect exclusion of neighbors (negative spatial correlations)
which will be defined precisely in the next section.2

The pair-correlation function

Let us consider spatial microstructure of rain as revealed by
two-dimensional ‘‘pavement patterns’’ (rain flux imprints).
It is not our goal to develop new theories of rain. Rather,
the task is more modest: development of mathematical
tools suitable for high spatial resolution rain analysis which
can be performed in a scale-localizable manner but is free
of ad hoc assumptions. For the sake of simplicity, we con-
fine ourselves to monodisperse rain (drop size distributions
are discussed later in the paper). Consider then the three
patterns of Fig. 2 (1st row) which represent hypothetical
traces left by raindrops arriving on a pavement during a
brief time period.3 We then ask: Which spatial pattern is
representative of real rainfall? This question is not merely
of academic interest but has implications in several fields,
e.g., interception of raindrops by vegetation (Calder,
1996; Calder et al., 1996) or soil erosion.4 The second row
depicts rain flux imprints for a longer time period, repre-
senting 500 of the ‘‘thin slices’’ (falling raindrops of the
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Figure 1 The left panel represents the ideal of randomness: statistically homogeneous Poisson process, characterized by a
complete lack of spatial correlations. Statistically homogeneous but spatially correlated random process is depicted in the middle
panel. Drop positions are uniformly distributed but are not independent random variables so that clump formation is allowed (but
clump ‘‘centers’’ are uniformly distributed). The ‘‘patchiness’’ is quantified by the pair correlation function g(l), specifically
defined as a deviation from perfect randomness (Poisson process) as discussed in the text. For completeness, a statistically
inhomogeneous Poisson process is illustrated in the right panel. There are no clumps but unlike the homogeneous process, number
density here is a deterministic (exponentially decreasing) function of height.
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same size). Why is there such a striking difference in the
cumulative ‘‘wetted’’ area?

In order to answer the question quantitatively, we bor-
row from statistical physics a crucially important tool: the
pair correlation function (pcf). To introduce the pcf, it is
helpful to elaborate on the notion of perfect spatial ran-
domness (middle column of Fig. 2). As stated earlier, com-
plete lack of spatial correlations in drop positions is the
defining feature of perfect randomness. This can be inter-
preted in several ways (e.g., see Cox and Isham, 1980; Iran-
pour and Chacon, 1988, p. 46 and Chapter 3, respectively):
(i) given N points, droplet positions are uniformly, identi-
cally, and independently distributed random variables; (ii)
nearest drop distances (areas in 2D, volumes in 3D, e.g.,
see Cox and Isham, 1980; Feller, 1966) are exponentially
distributed; (iii) the probability of finding a given number
of drops in a fixed volume is given by the Poisson distribu-
tion (for any volume). The difference between the three
descriptions is in the choice of the random variable: rain-
drop position, inter-drop spacing, or number of drops in a
volume.

Perhaps the most satisfying route to defining perfect ran-
domness and deviations from it is based on the notion of the
pcf (which is identically zero in the ideal case). The pcf is
defined via

Pð1; 2Þ ¼ c2dV1dV2½1þ gðlÞ�; ð1Þ

where P(1,2) is the joint probability of finding a drop in each
of the two disjoint volume elements dV1 and dV2, c is the
number density, cdV � 1 is the probability of finding a rain-
drop in dV, g(l) is the pair correlation function and l is the
separation distance between the two elementary volumes
(e.g., see Landau and Lifshitz, 1980).5 For example,
g(l) = 3 yields a factor of 4 enhancement of finding another
drop, distance l away from a given drop. Likewise, g(l) = �1
represents impossibility of encountering another droplet
distance l away from a given droplet (e.g., when l is less
5 The volume elements here can be interpreted as, say, square
mm of the pavement area and of a mm height so that no two drops
can be in the same dV at any one time. For a link between the pair-
correlation function to the more familiar autocorrelation function,
see Shaw et al. (2002, pp. 1049–1050).
T
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Rthan a raindrop diameter). Thus, perfect randomness is

characterized by pcf identically equal to zero for all l.
The three basic types of pair correlation functions are de-
picted schematically in the 3rd row of Fig. 2.

We now return to the question of rain texture: Is real
rain most similar to left, middle, or right column of
Fig. 2? The answer is likely a mixture of the 3 ‘‘states’’,
depending on the spatial scale but we can, at least, address
the issue in a precise manner by measuring the pcf of rain
flux imprints as indicated by Eq. (1). Note that g = g(l) de-
fines rain microstructure (texture) and does so in a scale
localizable manner. No assumptions whatsoever are made
here about g’s functional form. It is completely general.
For contrast, recall that (i) the often made (at least implic-
itly) assumption of perfect randomness requires that g van-
ish for all l; (ii) the fractal approach is based on the
assumption of scale-invariance which, in our terminology,
corresponds to a power-law functional form for g(l) (Vicsek,
1989, p. 23; and Shaw et al., 2002).

Direct application of Eq. (1) is often problematic, how-
ever, as the joint probability function P(1 ,2) (likelihood of
drop pairs separated by distance l) must be estimated from
data which, in turn, becomes increasingly sparse as the
scale decreases. For that reason, we next introduce an inte-
gral measure which can be used as a smoother estimator of
the pair-correlation function.
222
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The correlation-fluctuation theorem

Given the increase in count fluctuations, typically caused
by clustering (e.g., see 4th row of Fig. 2), it is natural
to ask whether there is a relation between the strength
of departure from perfect randomness (as measured by
the pcf) and the deviation from the Poisson distribution.
Indeed, such a connection exists. In the course of their
studies of X-ray scattering by liquids, Ornstein and Zernike
(1914) discovered that the mean squared fluctuation ðdNÞ2
of particle counts (variance of N) in a given volume is re-
lated to the pair correlation function integrated over the
same volume. This ‘‘fluctuation-correlation theorem’’ is
as follows (e.g., see Landau and Lifshitz, 1980, p. 352,
Eq. 116.5).
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Figure 2 Imprints left by fallen raindrops after a brief time interval. Left column corresponds to ‘‘negatively correlated raindrops,
the middle column represents a purely random rain flux, and the right column corresponds to a positively correlated (clustered) rain.
The next row shows the surface after raining for a longer period, representing 500 of the ‘‘thin slices’’ used in the first row (first row
dots were expanded to enhance visibility). Identical size (hence, no differential velocity) and number of raindrop splashes were used
in all cases but clearly the effective area coverage differs greatly. The third row shows schematic pair correlation functions
characterizing the three distributions. The fourth row displays the corresponding time series of total raindrop counts arriving per
unit area and time. Note fluctuations increasing from left to right. The bottom row displays the same raindrop counts as a histogram.
(In accordance with the correlation-fluctuation theorem, the negatively correlated medium has the narrowest distribution – see
text for details.)
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ðdNÞ2
�N

� 1 ¼
�N

V

Z
V

gdV ; ð2Þ

where �N � cV with c being the drop concentration, g is the
pair correlation function between particle counts in some
volume elements dV1 and dV2 within V and dN � N � �N is
the deviation from the mean count in a given volume V.
Again we stress that this relation is completely general
(aside from stationarity, which is a requirement for any cor-
relation function) and involves no assumptions about the
random process (as opposed to, for example, power-law
scaling used in fractal analysis). In the one-dimensional case
(to be discussed shortly), Eq. (2) becomes:

ðdNÞ2
�N

� 1 ¼
�N

L

Z L

0

gð‘Þd‘; ð3Þ

where �N ¼ �NðLÞ and N = N(L).
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The volume-averaged approximation to the pair correla-
tion function can be calculated as

�g � 1

V

Z
V

gdV ¼ ðdNÞ2

½�NðVÞ�2
� 1

NðVÞ
; ð4Þ

where we emphasize the explicit volume dependence of �N.
The �g is straightforward to calculate from measurements of
�N and ðdNÞ2 versus volume and it provides a smoother (but
coarser) alternative to the fundamental definition of g.

Note that in the limiting case of no correlation in (2),

g(l) � 0 and we recover the Poisson relation ðdNÞ2 ¼ �N.
The fourth and fifth row of Fig. 2 illustrate this. Both the
time series and the histograms display the increase of vari-
ability (variance) as the integral of the pair correlation
function over a counting volume increases from negative
values (left), through zero (middle), to positive values
(right) – all in accordance with the correlation-fluctuation
theorem. As the correlation integral increases, so do the
fluctuations – hence the name of the theorem. Since the
assumption of Poisson statistics is so prevalent and funda-
mental to most rain studies as well as to radar meteorology,
we think that it is crucial to point out the following:

5 the validity of the Poisson variance relation r2 ¼ �N for a
given measurement volume V implies only that the inte-
gral in Eq. (2) vanishes. It does not imply that the pcf is
zero at all scales (as in the Poisson process).

For example, for a long thin cylindrical integration vol-
ume such as the rain volume seen by a disdrometer in sta-
tionary conditions (or volume of raindrops detected by an
optical probe during an aircraft traverse, Shaw et al.
(2002)), Eq. (3) yields a one-dimensional integralZ L

0

gðlÞdl ¼ 0. ð5Þ

It is important to realize that the integral can vanish as a re-
sult of cancellation of positive and negative g(l) contribu-
tions at different scales. This is the critical difference
between the Poisson process and the Poisson distribution.
The former requires g(l) � 0, while the latter demands only
that

R L

0 gðlÞdl ¼ 0 hold for the length scale of interest (L).
Therefore, depending on the resolution some experiments
will pick up the non-Poissonian variance and some will
not. (Higher moments are not considered here.)6

The above observation is particularly relevant to rain
measurements obtained with disdrometers. As with most
instruments, disdrometers have length and time scales (res-
olutions) below which they are unable to detect two drops
(the equivalent of a ‘‘dead time’’ in counters) and create
an artificial ‘‘exclusion volume’’ where g = �1. This, in turn,
yields spurious negative correlations in drop positions/arri-
val times.7 Such spurious correlations may negate real clus-
tering and result in Poisson statistics on longer scales.

There may also be real physical causes for negative spa-
tial correlations, although they are hardly ever mentioned
348
349
350
351
352
353

6 For example, having to assume Poisson statistics for, say, a
typical radar resolution volume (e.g., Uijlenhoet et al., submitted)
may be approximately accurate and not nearly as restrictive as the
Poisson process assumption.
7 Raindrops posses definite size (d) so that inter-drop separation

must be larger. Because of this exclusion g = �1 for, at least, l 6 d.
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in the literature. As was mentioned above, one might ex-
pect ‘‘exclusion’’ to occur at very small scales in mist,
fog or drizzle where drops go around each other along
nearly laminar streamlines. Such ‘‘mutual avoidance’’ fol-
lows from observations of raindrop coalescence efficiency
considerably below unity (see Chapter 15 of Pruppacher
and Klett, 1997).

Texture implications for integral parameters
and the notion of a drop size distribution

How does the presence of fine scale texture (g(l)) affect
our description of rain in terms of spatially continuously
varying integral parameters such as rain rate or liquid
water content? Can one simply ignore their ultimately dis-
crete nature? To answer this, consider the simplest inte-
gral parameter notion, namely, that of spatially varying
drop concentration denoted as c(x). The expressions ‘‘con-
centration inhomogeneity’’ or ‘‘concentration fluctua-
tions’’ are often used in the literature (Pruppacher and
Klett, 1997) to describe the fact that c(x) is treated as a
random function of position. However, the notion of con-
centration fluctuations described by c(x) implies a wide
separation of three scales: inter-particle distance, scale
on which concentration is defined and the characteristic
scale over which concentration is varied. At the discrete
level, drop number fluctuations in such a picture corre-
spond to the so-called Cox (or doubly stochastic Poisson)
process. If the relevant length scales are indeed widely
separated, this can be visualized as the right column of
Fig. 2 (e.g., see Kostinski and Jameson (2000)). Let us
make this argument more precise.

To specify ‘‘concentration inhomogeneities’’, consider a
distribution of similar patches (containing raindrops),
roughly of a size L and relative voids of about the same size.
Then, drop counts will obey the Poisson distribution as long
as the local concentration (c) remains constant. However,
on longer spatial scales (larger than L), the concentration it-
self will fluctuate as measurements move from patch to
patch. Thus, to obtain the total (over many Ls) drop count
distribution, one must integrate over pð�NÞ

PðNÞ ¼
Z 1

0

PðNj�NÞpð�NÞd�N ¼
Z 1

0

�NN expð��NÞ
N!

pð�NÞd�N; ð6Þ

where the vertical bar denotes conditional probability, V is
an individual measurement volume (assumed much smaller
than L3), and �N ¼ cV. Hence, the process is doubly stochas-
tic (Cox) because the ‘‘shot noise’’ fluctuations ride on top
of the longer scale patch-to-patch fluctuations. Now, these
sources of randomness are due to independent causes and
their variances, therefore, add:

r2
N ¼ r2

P þ r2
�N. ð7Þ

As expected, the variance is increased beyond that of a pure
Poisson pdf by the variance of �N ¼ cV (‘‘concentration inho-
mogeneities’’), that is, the first term is the pure Poisson
contribution i.e., r2

P ¼ l �
R1
0

�Npð�NÞdN, and l ¼ Eð�NÞ is
the expectation value of the raindrop counts when averaged
over realizations for the entire domain. For example, when
the concentration distribution is an exponential one,
r2
N ¼ lþ l2 results (Kostinski and Jameson (2000)).
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8 The coagulation equation is often written in terms of the
number of particles of a given size N(D,t,r). Our distribution
function p is recovered by normalizing with the total particle
number N = cV.
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It can be seen immediately that any negatively corre-
lated media cannot be described as a superposition of
locally Poisson processes and therefore falls outside the
‘‘concentration inhomogeneity’’ framework. This can be
seen by noting that the fluctuation-correlation theorem al-
lows sub-Poisson variance when �g is negative but the frame-
work of concentration fluctuations does not (as shown
above). This is illustrated in the 4th row of Fig. 2. Thus,
unlike negatively correlated rain, the ‘‘concentration inho-
mogeneity’’ description always (at any scale) yields a super-
Poissonian variance. In other words, if rain is negatively
correlated on some length scale, fundamentally it cannot
be adequately described via spatially varying liquid water
content, rain rate, etc. until much longer scales are
reached. How long? The scale (call it X) must be long enough
so that the memory of negatively correlated g is ‘‘erased’’
from the integral

R X

0 gðlÞdl.
Next, let us ask whether ‘‘fine texture’’ requires similar

reconsideration of a size-distributed rain. We shall still as-
sume statistically stationary and homogeneous rain, i.e.,
one with an ‘‘equilibrium’’ size distribution. Let us regard
the normalized part of the drop size distribution (DSD) as
a probability density function (e.g., see Kostinski and Jame-
son, 1999). For example, for the simplest exponential size
distribution, we write

NðDÞ ¼ N
1
�D
expð�D=�DÞ

� �
; ð8Þ

where N is the total number of drops per volume V and the
pdf is the expression in square brackets (call it p(D)) be-
cause

R1
0 pðDÞdD ¼ 1. Then the probability of finding a drop

size within a range (D, D + dD) is given by p(D)dD. In a man-
ner, analogous to the spatially varying concentration above,
we can now inquire about the nature and time evolution of a
general size distribution probability density p = p(D,r,t).
Insofar as the drop size distribution is a generalization of
the spatially varying random concentration, the latter is
subject to the same difficulties with regards to rain texture
as the former. Time evolution of a size distribution is of
additional concern, however.

The traditional approach to evolution of size-distributed
rain is based on the coagulation equation which is an inte-
gro-differential equation for a general space and time vary-
ing random function p(D,r,t). Much of cloud physics is
dominated by the idea that such a stationary size distribu-
tion evolves naturally with time as a result of equilibrium
between break-up and coalescence, e.g., Atlas and Ulbrich
(2000), Young (1993). But is this ‘‘equilibrium’’ notion com-
patible with the state of perfect spatial randomness or does
it imply some time-dependent form of g(l)? Despite the
arguments in Srivastava (1971), Valdez and Young (1985)
that there might not be enough time for an equilibrium to
be established in a real atmosphere, the idea still appears
prevalent when interpreting observations as well as com-
puter model results, e.g., see Ulbrich and Atlas (2002). To
that end we shall next briefly re-examine the ‘‘discrete lim-
it’’ to point out the following:

(1) Spatial correlations at sufficiently short scales cannot
be incorporated into the coagulation equation
because the equation is rooted in the abstract size
space as opposed to actual physical space. The diffi-
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culty lies in contradictory requirements imposed by
sufficient spatial resolution and ability to neglect fluc-
tuations, as discussed below.

(2) Even if a statistically homogeneous texture-less equi-
librium drop size distribution were to be attained at
some moment, the associated state of perfect spatial
randomness would be unstable at short distances
because of drop fragmentation. In other words, drop
fragmentation turns the left panel of Fig. 1 into the
middle one as detailed below.

Let us discuss the two comments, in turn. Consider the
notion of a continuously varying size distribution function
in the coagulation equation and ask about the physical
meaning of p = p(D,r,t) at a specified position r.8 Clearly,
the particle number (or expectation value) at a point is zero
(DV = 0) and in order to avoid the ‘‘shot noise’’ fluctuations
in the expected drop number, one has to introduce a mea-
surement volume DV sufficiently large to contain many rain-
drops. More precisely, for the success of continuous
description, DV must be so large that the count fluctuations
for all sizes can be neglected. But can we accomplish this
and yet resolve spatial texture?

To test, we calculate the expected number of drops
within a range DD at t and r, with the control volume DV
centered at r. This is given by the product (cDV)p(D,r,t)DD.
In order to neglect fluctuations, in each size bin, we must at
least satisfy

ðcDVÞpðD; r; tÞDD ¼ NpðD; r; tÞDD ¼ NðDÞDD � 1. ð9Þ

To be more precise, one can obtain a lower (optimistic)
bound by resorting to the Poisson distribution, and employ
the ‘‘

ffiffiffiffi
N

p
’’ rule: [N(D)DD]�1/2 = � where � denotes desired

accuracy (coefficient of variation of drop counts). Hence,
the number of drops in every bin size must satisfy
N(D)DD P 1/�2. This constraint is most stringent for the
rarest largest drops. For example, in order to achieve � of a
few percent, using the density given by (8) with DD ¼
0:2 mm; �D ¼ 0:6 mm; D ¼ 3 mm, and c � 103 m�3 requires
a measurement volume V on the order of several hundred cu-
bic meters! Hence, we conclude that it is impossible to work
with a statistically meaningful p(D,r,t) and yet resolve spa-
tial correlations below the scale of a few meters.

Is there a way to avoid this difficulty? Perhaps one could
get around this problem by resorting to an ensemble inter-
pretation of p(D,r,t) (or expectation values) and invoking
the ergodic hypothesis. This might allow a multitude of rain
realizations with the same p(D,r,t). The first problem with
this alternative is that any individual realization of such an
ensemble would still be dominated by the discrete count
fluctuation (‘‘shot noise’’) when small scales are consid-
ered. This has been discussed above. Furthermore, in our
opinion, the ensemble alternative is not a viable one be-
cause spatial correlations occur in the real physical (rather
than the abstract ensemble) space as is illustrated in the
following example. Consider a deliberately extreme case
of a collection of rain clouds, widely separated in real
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space. Furthermore, let each cloud contain raindrops of a
single size but differ from cloud to cloud. In the ensemble
space, the size distribution can still be defined by the rela-
tive number of such single drop size clouds in the entire
ensemble but what is the physical meaning of such a distri-
bution? No interaction occurs among different sizes because
of the physical separation which renders the evolution of a
size distribution predicted by the coagulation equation
physically meaningless.

The conflicting requirements of a statistically meaningful
drop size distribution, on one hand, and of sufficient spatial
resolution on the other may be of practical significance in
many applications. This difficulty may cause spurious radar
reflectivity – rainfall (Z � R) relations (Jameson and Kostin-
ski, 2002). Furthermore, as is well known, e.g., see Rinehart
(1991, pp. 166–167), the very notion of the ‘‘ground truth’’
applied to disdrometers when used to ‘‘validate’’ radar-
derived Z � R relations can be misleading when the disd-
rometer measurement volumes are small.

Let us conclude by commenting on the question of rain
texture stability with respect to the ‘‘coalescence vs.
breakup equilibrium’’ size distribution. Above we con-
cluded that spatial correlations are incompatible with the
abstract ‘‘size space’’ point of view, enforced by the coag-
ulation equation. On the other hand, lack of spatial corre-
lations (as implied by the coagulation equation) defines
perfect spatial randomness. So is the notion of the ‘‘equi-
librium’’ size distribution compatible with perfect spatial
randomness? The answer is no and it is an interesting
argument.

Drop fragmentation (like birth) is spatially localized as
the fragments are adjacent to each other right after drop
break-up. This creates local ‘‘bursts’’ of concentration
which coalescence cannot quickly counter through simple
pair-wise collisions. An initially purely random (Poisson)
field of drops, therefore, actually creates persistent
super-Poisson droplet fluctuations of concentrations of
smaller drop sizes (fragments). Schematically, the middle
column pattern of Fig. 2 suddenly turns into the right col-
umn pattern. This phenomenon has recently been vividly
illustrated by Young et al. (2001) in the context of reproduc-
tive pair correlations and clustering of organisms. In our
case, such cluster production once again focuses attention
on the scale dependence of the size-distribution.
O 568

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
U
N
CConcluding remarks

As was pointed out in Lovejoy et al. (2003), few studies have
been devoted to the question of stochastic scaling at really
short distances (mm to m region). In response, here we pro-
pose a new definition of texture for rain which captures all
scales in a single function (within stationary and homoge-
neous framework). We urge experimentalists to apply the
new formalism to high resolution rain data (e.g., such as re-
ported in Lovejoy et al. (2003)). Our proposed formalism is
general unlike, for example, the fractal approach which as-
sumes power-law behavior for the pair correlation function.
We have also shown that fine texture (particularly nega-
tively correlated rain) is not compatible with the idea of
concentration fluctuations or inhomogeneities. Finally, we
established rough lower bounds for length scales beyond
which the integral parameters such as rain rate or size dis-
tribution become meaningful.
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