
An example of an analytically solvable coupled Physical system

In class, we just finished solving equations of motion under the conditions of linear and quadratic
air resistance. We were only able to come up with a closed-form solution for quadratic air resistance
in the ŷ or x̂ directions, and one theory as to why is that those are the only two directions we can
choose (assuming we have lined up our coordinate system so that ŷ is up) where the equations
of motion become uncoupled. One might then conclude that any coupled system is impossible to
solve; this is a counter-example – motion of a charged particle in uniform ~B field. Your textbook
comes up with the same final answer I do here, but does so in a different way.

We start by talking about a particle of charge q in the presence of the following electric and magnetic
fields:

~E = ~0

~B = Bẑ

where B is the (constant) magnitude of the magnetic field ~B. The initial velocity of the particle is
not explicitly specified, so we merely write:

~v = vxx̂+ vyŷ + vz ẑ

~v◦ = vx◦x̂+ vy◦ŷ + vz◦ẑ

Since the Lorentz force can be written:

~FEM = q( ~E + ~v × ~B)

we can find the time-dependent force by computing:

~FEM = 0 + q

∣∣∣∣∣∣
x̂ ŷ ẑ
vx vy vz
0 0 B

∣∣∣∣∣∣ = q(vyBx̂− vxBŷ)
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Thus, appealing to Newton’s second law to develop equations of motions for each of the 3 cartesian
directions, we have:

Fx = mv̇x = qvyB

Fy = mv̇y = −qvxB
Fz = mv̇z = 0

Clearly, the z-coordinate is easiest to deal with, and we have:

m
dvz
dt

= 0

m

∫ vz(t)

vz◦

dvz = 0

m[vz(t)− vz◦] = 0

vz(t) = vz◦

Which isn’t really a surprise. With a magnetic field in the z direction, the only thing we know is
that there is never a force in the z direction and, hence, the z velocity stays the same forever.

The x and y components above, however, are coupled – which so far has meant trouble for us.
The book uses complex numbers to solve this – which is interesting. For those of you who are less
comfortable with i, however, you can use standard diffeq type techniques to find vx(t) and vy(t)
(and, ultimately, x(t) and y(t) if you know initial conditions).

We start by looking at the first expression:

mv̇x = qvyB

d

dt
(mv̇x) =

d

dt
(qvyB)

ṁv̇x +mv̈x = q̇vyB + qv̇yB + qvyḂ
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Noting that m, q, and B are assumed constant (and thus their time derivatives are zero) we then
have:

mv̈x = qv̇yB

v̇y =
m

qB
v̈x

We will use this expression for v̇y and plug it into the second expression (which we obtained by
looking at the forces in the y-direction):

mv̇y = −qvxB

m

(
m

qB
v̈x

)
= −qvxB

v̈x +

(
qB

m

)2

vx = 0

This is a differential equation that should look familiar. IF YOU DO NOT KNOW THIS AL-
READY, YOU SHOULD! The solution of the second-order differential equation ẍ+ κ2x = 0 has a
solution given by x(t) = A sin(κt) +B cos(κt). If you are only going to know a few diffeq solutions,
this is one of them you should have handy. Thus, we can write:

vx(t) = α cos

(
qB

m
t

)
+ β sin

(
qB

m
t

)

Now we apply initial conditions and note that since vx(t = 0) = vx◦, we can set α = vx◦ and we end
up with the expression:

vx(t) = vx◦ cos

(
qBt

m

)
+ β sin

(
qBt

m

)
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We now can go back and plug THIS back into the initial expression for the x motion and obtain:

mv̇x = qBvy

m

[
−qBvx◦
m

sin

(
qBt

m

)
+
qBβ

m
cos

(
qBt

m

)]
= qBvy

vy =
m

qB

[
−qBvx◦
m

sin

(
qBt

m

)
+
qBβ

m
cos

(
qBt

m

)]
vy = −vx◦ sin

(
qBt

m

)
+ β

(
qBt

m

)

Applying the other initial condition that vy(t = 0) = vy◦ = β, we have:

vx(t) = vx◦ cos(ωt) + vy◦ sin(ωt)

vy(t) = vy◦ cos(ωt) + vx◦ sin(ωt)

with ω ≡ qB
m

. Note that the magnitude of the total velocity vector is constant (e.g. v2x + v2y + v2z =
v2x◦ + v2y◦ + v2z◦), so the magnetic field is doing no work.

What was the point to this exercise? We merely showed that when the coordinates are coupled, all
hope is necessarily not lost. We were still able to solve the differential equations to find ~v(t) (and
we could easily integrate the expressions to find ~r(t), even in this case where the x-forces depend
on the y-velocity and the y-forces depend on the x-velocity. We are only in trouble SOMETIMES
when things are coupled. In short, we need to get lucky.

(For what it is worth, if vz◦ = 0, this system results in uniform circular motion. If vz◦ 6= 0, we end
up with helical motion with the axis of the helix either parallel or antiparallel to ẑ).
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