For all Points in Volume Not on Fixed Boundary, Assign a new value $V_{n}(i, j)=(1 / 8)\left[V_{(n-1)}(i+1, j-1)+V_{(n-1)}(i+1, j)\right.$

$$
\left.+V_{(n-1)}(i+1, j+1)+V_{(n-1)}(i, j-1)+V_{(n-1)}(i, j+1)+V_{(n-1)}(i, j+1)+V_{(n-1)}(i-1, j-1)+V_{(n-1)}(i-1, j)+V_{(n-1)}(i-1, j+1)\right]
$$

(in other words, assign a new value $V_{n}(i, j)=$ the average of all its two-dimensional neighbors in the previous iteration (n-1)).
Leave Points Defining the Boundary Conditions Unchanged.
Note that the quantities on the RHS of the equation are taken from the PREVIOUS iteration step, so that the LHS gives $\mathrm{V}(\mathrm{i}, \mathrm{j})$ at computational time-step n computed from the 8 spatial neighbors at iteration step $(\mathrm{n}-1)$.

NO

Is $\max _{(i, j)}\left(\left|V_{n}(i, j)-V_{(n-1)}(i, j)\right|\right)<=$ some tolerance for convergence of the solution?

YES

Congratulations. You've found a numerical solution to Laplace's equations for the specified Boundary Conditions. $\mathrm{V}_{\mathrm{n}}(\mathrm{i}, \mathrm{j})$ is approximately $\mathrm{V}(\mathrm{i}, \mathrm{j})$ with an uncertainty a few times your tolerance.

