
Force Vectors in Electrostatics – A simple example

Assume there are two charges as follows:

• q1, a charge of 83.2 nC at position 〈3.1 cm, 2.4 cm〉

• q2, a charge of −1.35 µC at position 〈−1.2 cm, 5.3 cm〉

Charge q1 is fixed (unable to move). What is the force on charge q2 due to q1?

This isn’t very hard if all we are asked to do is find the magnitude, then we could just use
Coulomb’s law:

|~Fq1q2| =
k|q1||q2|
r212

plug in the appropriate values and we’re done. However, we’re asked to find the force –
which is a vector. This means we’ll need a bit more work.

Here’s our plan of attack:

• Look at the positions of the charges to figure out if the force on q2 due to q1 is in the
+x or −x direction and the +y or −y direction.

• Calculate the magnitude of the total force on q2 due to q1 via Coulomb’s law.

• Use some basic trigonometry to figure out what fraction of the force is in the x and y
directions.

• Calculate the components of the total force (~Fq1q2)x and (~Fq1q2)y.

• Use the component information just found to determine the final answer.
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Directions of the force

Following our plan of attack above, we need to first figure out which direction the force on
q2 will be. A quick sketch might help us out a bit.

Now, since q1 and q2 have opposite signs, the force will be attractive. q1 will thus pull q2 in
the positive x direction and the negative y direction. This will help us later on.

Total magnitude of the force

As noted above, we can write the total magnitude of the force via Coulomb’s law:

|~Fq1q2| =
k|q1||q2|
r212

We have to make sure to use proper units, however. We’re given charges in µC and nC, and
distances in cm. If we want to actually get an answer in Newtons, we need to use SI units
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for everything else – which means converting the charges to Coulombs (C) and the distances
to meters. Recalling there are 100 cm in a meter, we can write:

|~Fq1q2 | =
8.99× 109 N m2

C2 · (83.2× 10−9 C) · (1.35× 10−6 C)[
((−.012 m− .031 m)2 + (.053 m− .024 m)2)1/2

]2
|~Fq1q2| =

8.99× 109 N m2

C2 · (83.2× 10−9 C) · (1.35× 10−6 C)

(−.043 m)2 + (.029 m)2

A couple things to note: first, we calculate r12 via taking the differences in the x components
of the positions, squaring them, and adding to the differences in the y components and
squaring them. The magnitude of that distance is the square root of this sum of squares (it
is really the Pythagorean theorem hidden). However, we then have to square this at the end
since we want r212, so all we really need to do is to take (~r12)

2
x + (~r12)

2
y.

When we calculate the total force, we come up with:

|~Fq1q2| ≈ 0.3754 N

So now we have the total force as well as the general direction – there is a component in the
+x direction and a component in the −y direction as per our considerations above.

Magnitudes of the X and Y components

The electrostatic force – just like gravity – acts in the line connecting the two objects in
question. On Earth, with gravity, we generally don’t have to think about components of
the force very often because we usually choose a coordinate system with gravity “down”, so
~g = 〈0,−9.81 m/s2〉. (The entire force is in the y component.) Here, we have to resolve the
force into its two basic components. Because it is parallel to the vector between them, we
can write:
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(~Fq1q2)x = |~Fq1q2|
(~r12)x
r12

(~Fq1q2)y = |~Fq1q2|
(~r12)y
r12

where (~r12)x corresponds to the x component of the vector pointing from q1 to q2, (~r12)y
corresponds to the y component of the vector pointing from q1 to q2, and r12 is the total
magnitude of the vector pointing from q1 to q2 (aka the distance between the two charges).

(Note, the reason we’ve troubled ourselves to find out what the final direction of the force is
as step 1 is so that we don’t have to be too careful about if we really need ”the vector from
q1 to q2 or the vector from q2 to q1. This technique will give us the magnitude, and then we
slap on a negative sign if necessary based on our physical reasoning from the beginning of
the problem).

Following this logic, then, we have:

(~Fq1q2)x = 0.3754 N
(−.012 m)− (.031 m)

((−.043 m)2 + (.029 m)2)1/2
≈ −0.3112 N

(~Fq1q2)y = 0.3754 N
(.053 m)− (.024 m)

((−.043 m)2 + (.029 m)2)1/2
≈ 0.2099 N

Now, we’re not going to worry too much about the sign here since we already know what sign
each component is supposed to have. We just did this step to find out what the magnitude
of each component should be.

Values of the X and Y components

In the first section, we argued that this force should be in the positive x direction and the
negative y direction, therefore our total force is:
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~Fq1q2 = 〈.3112 N,−.2099 N〉

Depending on the problem statement, this can be our answer. However, often times people
prefer to specify vectors with an angle and a direction instead of as two components. Let’s
do that as well.....

Final Answer

The final answer can either be what we just calculated:

~Fq1q2 = 〈.3112 N,−.2099 N〉

or we can write that it is a force of magnitude 0.3754 N. To completely specify the vector,
however, we also must give a direction. Since the force is in the +x direction and the −y
direction, we can specify the direction in terms of an angle with respect to the horizontal.
If we form a triangle, then using basic trigonometry we can conclude that the tangent of
the angle of declination (the tangent of the angle lower than the horizontal) is given by
|F |y/|F |x, or:

tan θ =
.2099

.3112

θ = tan−1 .2099

.3112
θ ∼ 34◦

So another way of saying our answer is to say that the total force is 0.3754 N at an angle
34◦ declined from the horizontal.
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Force Superposition

Some worked-out examples of force superposition can be found in your text (see 19-2 and
19-3; read 19-3 carefully).

Here’s another example.

Assume there are three charges as follows:

• q1, a charge of +4.7 µC at position 〈0, 2.2 m〉

• q2, a charge of −2.3 µC at position 〈1.3 m, 0〉

• q3, a charge of −3.1 µC at position 〈2.4 m, 0.5 m〉

Charges q1 and q2 are unable to move. What is the total force on charge q3 due to these other
two charges?

I always find it easiest to start with a picture, so let’s plot the alignment of the three charges.
While we’re at it, I’ll plot a couple more things that might come in handy later.

The left figure shows the position of the three charges, and I’ve already figured out the
directions of the two forces acting on q3, noting that the force between q1 and q3 must be
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attractive (since they have different signs), and the force between q2 and q3 must be repulsive
(since they have like charges).

We know from Coulomb’s law that:

|~Fq1q3| =
k|q1||q3|
r213

|~Fq2q3| =
k|q2||q3|
r223

Also, for notational convenience, let

• q1 be at point P1 with co-ordinates (P1)x and (P1)y

• q2 be at point P2 with co-ordinates (P2)x and (P2)y

• q3 be at point P3 with co-ordinates (P3)x and (P3)y

The middle and right parts of the included figure help to realize that some basic geometry
can help us out in resolving the x and y coordinates of these forces. The figures are drawn
for ~Fq1q3 . The middle figure shows how the vector ~r13 can be found by looking at the x
and y components of the differences in the position vectors for P1 and P3. The right figure
shows how we can decompose the force vector ~Fq1q3 into its x and y coordinates. The
key observation is that these two figures show similar triangles; all the interior angles are
identical, because the force is in the same direction as the separation vector. Therefore, the
ratio of the “bottom” to the “hypotenuse” in both triangles is the same. As an equation
(and working just with the magnitudes of the vectors), this means we can write:

|(~Fq1q3)x|
|~Fq1q3|

=
(P3)x − (P1)x

r13

|(~Fq1q3)x| = |~Fq1q3| ·
(P3)x − (P1)x

r13
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Using the exact same reasoning, we can write both components of both forces:

|(~Fq1q3)x| = |~Fq1q3| ·
(P3)x − (P1)x

r13

|(~Fq1q3)y| = |~Fq1q3| ·
(P1)y − (P3)y

r13

|(~Fq2q3)x| = |~Fq2q3| ·
(P3)x − (P2)x

r23

|(~Fq2q3)y| = |~Fq2q3| ·
(P3)y − (P2)y

r23

Since we know ~Fq1q3 is up and to the left, we know the x component of this force must be

negative and the y component must be positive. Since we know ~Fq2q3 is up and to the right,
we know the x and y components of this force must both be positive.

Now, as soon as we are able to write r13 and r23 in a convenient form, we’re pretty much
done. Using the Pythagorean theorem:

r13 =
[
((P1)x − (P3)x)2 + ((P1)y − (P3)y)

2]1/2
r23 =

[
((P2)x − (P3)x)2 + ((P2)y − (P3)y)

2]1/2
Putting everything together, we can write:

(~F )x =
−k|q1||q3|

r313
((P3)x − (P1)x) +

k|q2||q3|
r323

((P3)x − (P2)x)

(~F )y =
k|q1||q3|
r313

((P1)y − (P3)y) +
k|q2||q3|
r323

((P3)y − (P2)y)

Plugging everything is reasonably tedious and it is easy to make a mistake. However, if you
do it right, you should get:
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(~F )x = 0.0276 N

(~F )y = 0.0269 N

Thus, the total force is:

|~F | =
[
(~F )2x + (~F )2y

]1/2
= 0.0385 N

Of course, this is only part of the answer. This gives us the total magnitude, but not the
direction. Noting that the resulting force has a positive x and y component, we can use
trigonometry to infer that:

θ = tan−1

(
(~F )y

(~F )x

)
≈ 44.2◦ inclined from x direction
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