## Assignment II, PHYS 272 (MAP) Fall 2014 <br> Due $8 / 29 / 14$ at start of class

Note! Unless specified otherwise in the question, it is expected your solutions do NOT rely on the use of Mathematica, MATLAB, Maple, etc. nor calculators, slide-rules, integral tables, internet sources, etc! The idea is that you should be able to do these things without outside resources!

1. An important function in Solid-State Physics is the Lennard-Jones potential. This relationship takes on the following form:

$$
f(r)=\frac{A}{r^{12}}-\frac{B}{r^{6}}
$$

with $A$ and $B$ positive real constants, and $r$ indicating the distance form the origin (thus only positive real values of $r$ are necessary).
a) This function has one global minimum. Find the value of $r$ at this minimum.
b) What is the smallest possible value of $f(r)$ ?
c) Sketch a plot of this function (by hand). Make sure to clearly indicate any important values.
2. Sketch a plot of the following function (by hand). Make sure to clearly indicate any important values. Assume $a$ is a positive real constant.

$$
f(x)=\frac{(x-a)}{a^{2}-(x-a)^{2}}
$$

3. Approximate, to within $1 \%$ accuracy (by hand!):
a) $70^{1 / 6}$
b) $\cos \left(\frac{5}{6}\right)$
c) $\ln \left[100\left(\frac{e}{3}\right)^{4}\right]$
4. In introductory Physics, we often tell students that you can use the approximation $\sin x \approx x$ (in radians, of course) for small values of $x$. Invariably, students ask "how small does $x$ have to be to use this approximation?" Let's explore this a bit. A full representation of $\sin x$ can be written as:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!} \ldots
$$

(I assume you already knew that, but just to be safe I'm giving it to you). The smaller $x$ is, the smaller $x^{n}$ is as well, and the terms after the first one become vanishingly small for small values of $x$. When $x<1$, you can pretty clearly demonstrate that each successive term is always smaller than the term preceding it, so a good "first-order" correction to $\sin x \approx x$ for $x<1$ is $\sin x \approx x-\frac{x^{3}}{6}$. Let us define the relative change in using this correction by exploring the quantity:

$$
Q=\frac{x-\left[x-\frac{x^{3}}{3!}\right]}{\left(x-\frac{x^{3}}{3!}\right)}
$$

Find (using a calculator, if you must), the value of $x$ so that $Q$ is equal to:
a) $0.25(\sim 25 \%$ error in ignoring the second term).
b) $0.10(\sim 10 \%$ error $)$
c) $0.05(\sim 5 \%$ error $)$
d) $0.01(\sim 1 \%$ error $)$
e) $0.001(\sim 0.1 \%$ error $)$
5. We're now going to take a somewhat careful look at a relatively ugly integral. Both the integrand and the antiderivative (if you look it up) can be well approximated (near $x=0$ ) by a power-law series with just a couple terms. Carefully follow the instructions below and consider the following integral:

$$
\int e^{-a x} \sin (n x) \mathrm{d} x
$$

with $a$ and $n$ both positive constants. This integral is rather ugly if you don't have the aid of some computer algebra system, but that doesn't mean we can't get a pretty good approximation. Often, a quick power-law substitution can be your best friend.
a) Use the power-law expansions for $e^{-a x}$ and $\sin (n x)$ near $x=0$ to approximate the integrand as a cubic polynomial. (Retain all terms involving $x^{0}, x^{1}, x^{2}$, and $x^{3}$ in the integrand).
b) Integrate the cubic polynomial you obtained in part (a) to come up with an approximate expression for the integral above. Your answer should be a fourth-order polynomial in $x$.
c) Use your answer to part (b) to numerically estimate:

$$
\int_{0}^{0.1} e^{-3 x} \sin (5 x) \mathrm{d} x
$$

(You may use a calculator, if you wish, to evaluate this. It should be just a plug and chug into your answer for part $b$ using the limits $x_{\min }=0$ and $x_{\max }=0.1$ with $a=3$ and $n=5$.
d) If you use Mathematica or integral tables, you should find that:

$$
\int e^{m x} \sin (p x) \mathrm{d} x=\frac{e^{m x}}{m^{2}+p^{2}}(m \sin (p x)-p \cos (p x))
$$

(notice that this is written as an indefinite integral). Use this formula (and a calculator, if desired), to evaluate the definite integral in part (c). Compare to your answer calculated in part (c) from your power-law approximation to the integral.
e) Let's actually explore the power-series expansion of the true antiderivative of the function given in part (d): Use the power-law expansions for $e^{-3 x}, \sin (5 x)$ and $\cos (5 x)$ to approximate $\frac{e^{-5 x}}{34}(-3 \sin (5 x)-5 \cos (5 x))$ as a third order polynomial.
f) Plug in $x_{\max }=0.1$ and $x_{\min }=0$ into this power-law approximated anti-derivative in part (e) to see how close this is to your answers to part (d) and part(c).
6. You may have never run into this, but there is a beast called the "double-factorial" n!!; if you haven't seen it, you might see it in QM or a few other places (it often creeps up in PDEs). $n!!$ is $\operatorname{NOT}(n!)!$. Rather, $n!!\equiv n(n-2)(n-4)(n-6) \ldots(1)$. For example, $5!!=5 \cdot 3 \cdot 1=15$. For even numbers, you stop at 2 , so $8!!=8 \cdot 6 \cdot 4 \cdot 2=384$. For even $n$, there is a relationship that reads:

$$
n!!=f(n)\left(\frac{n}{2}\right)!
$$

find $f(n)$.
7. This one is deceptively tricky! Which is bigger, $\pi^{\mathrm{e}}$ or $\mathrm{e}^{\pi}$ ? Give a clear reason for your answer. Remember, no calculators/Mathematica/etc! Your reason needs to be based on some sort of manipulation and/or valid logical argument.

