Homework 2, PHYS 415 (Fluid Mechanics) Spring 2019 Due Thursday 17th January 2019 at Beginning of Class

As always, turn in your legible and annotated work on separate paper.

Let:

$$\begin{split} \vec{a} &= yz\hat{x} + xz\hat{y} + xy\hat{z} \\ \vec{b} &= x^2e^{-z}\hat{x} + y^3\ln(x)\hat{y} + z\cosh(iy)\hat{z} \\ \vec{c} &= r^2\hat{r} \qquad (\text{spherical coordinates}) \\ \vec{d} &= \frac{1}{s^2}\hat{s} \qquad (\text{cylindrical coordinates}) \\ f &= 3x^2yz \\ g &= \cosh(xy) \\ h &= r^3 \qquad (\text{spherical coordinates}) \end{split}$$

1. Compute the following:

- a) $\vec{\nabla} \cdot \vec{a}$
- b) $\vec{\nabla} \cdot \vec{b}$
- c) $\vec{\nabla} \cdot \vec{c}$
- d) $\vec{\nabla}\cdot\vec{d}$
- e) $\vec{\nabla} \times \vec{a}$
- f) $\vec{\nabla} \times \vec{b}$
- g) $\vec{\nabla} \times \vec{c}$
- h) $\vec{\nabla} \times \vec{d}$
- i) $\vec{\nabla} f$
- j) $\vec{\nabla}g$
- k) $\vec{\nabla}h$
- l) $\nabla^2 f$ (if you haven't seen ∇^2 before, this means $\vec{\nabla} \cdot (\vec{\nabla} f)$).
- m) $\nabla^2 g$
- n) $\nabla^2 h$

- 2. Write the following equations in index notation. The tilde symbol above a variable (e.g. \tilde{A}) indicates a matrix. (All of the equations below should be well-defined).
 - a) $\vec{f} = \vec{a} + \vec{b} \times \vec{c}$ b) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{f} \cdot \vec{g}) |\vec{h}|^2 \vec{k}$ c) $\vec{A}\vec{x} - (\vec{y} \times \vec{z}) = \vec{b}$ d) $\vec{\nabla}\phi + \vec{\nabla} \times \vec{a} = (\vec{\nabla} \cdot \vec{b})\vec{c}$ e) $(\nabla^2 \phi)\vec{a} + \vec{B}\vec{c} = \vec{d} \times \vec{f}$ f) $\frac{\partial^2 \vec{u}}{\partial t^2} = |\vec{v}|^2 \nabla^2 \vec{u}$ g) $\frac{-\hbar^2}{2m} \nabla^2 \Psi + V \Psi = i\hbar \frac{\partial \Psi}{\partial t}$ h) $\vec{u} + (\vec{a} \cdot \vec{b})\vec{v} = |\vec{a}|^2 (\vec{b} \cdot \vec{v})\vec{a}$
- 3. Use index notation to demonstrate the following:
 - a) $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) \vec{c}(\vec{a} \cdot \vec{b})$ b) $\vec{\nabla} \cdot (\vec{a} \times \vec{b}) = \vec{b} \cdot (\vec{\nabla} \times \vec{a}) - \vec{a} \cdot (\vec{\nabla} \times \vec{b})$ c) $\vec{\nabla} \times (\vec{\nabla}\phi) = 0$ d) $\vec{\nabla} \times (\vec{\nabla} \times \vec{a}) = \vec{\nabla}(\vec{\nabla} \cdot \vec{a}) - \nabla^2 \vec{a}$
- 4. The Helmholtz theorem tells us that any vector \vec{F} can be written as the negative gradient of a scalar field plus the curl of a vector field. i.e.:

$$\vec{F} = -\vec{\nabla}V + \vec{\nabla}\times\vec{E}$$

- a) Rewrite the above vector equation in index notation.
- b) Manipulate the expression in part (a) to show that $\vec{\nabla} \times \vec{F} = \vec{\nabla}(\vec{\nabla} \cdot \vec{E}) \nabla^2 \vec{E}$. (This doesn't mean just referencing some source that argues that this is true; it means manipulating the index notation to clearly progress from the expression in part (a) to something equivalent to the above in index notation).
- 5. Use index notation to simplify / rewrite the following to the number of terms specified. (Let ϕ be an arbitrary scalar function and \vec{a} be an arbitrary vector function):
 - a) $\vec{\nabla} \times (\phi \vec{\nabla} \phi)$ (when simplified, this can be written as a single term).
 - b) $\vec{\nabla} \cdot (\phi \vec{\nabla} \phi)$ (when rewritten, this should have two terms).
 - c) $\vec{\nabla} \times (\phi \vec{a})$ (when rewritten, this should have two terms).

- 6. Simplify the following expressions:
 - a) $\delta_{ij}\delta_{ij}$
 - b) $\delta_{ij}\delta_{jk}\delta_{ki}$
 - c) $\epsilon_{ijk}\epsilon_{mjk}$
 - d) $\epsilon_{ijk}\epsilon_{ijk}$
 - e) $\delta_{ij}\epsilon_{jkm}$
- 7. Let $\hat{r}(t) \cdot \hat{r}(t) = 1$. Differentiate both sides of the equation. Based on your result, what is the geometrical relationship between \hat{r} and $\dot{\hat{r}}$ (the time derivative of \hat{r})? (This should teach you or remind you about a property of polar coordinates. If you have no idea what I'm talking about, don't worry.)
- 8. The force on a charge q moving with velocity $\vec{v} = \frac{d\vec{r}}{dt}$ in a magnetic field \vec{B} is $\vec{F} = q(\vec{v} \times \vec{B})$. Since $\vec{\nabla} \cdot \vec{B} = 0$, we can write \vec{B} as $\vec{B} = \vec{\nabla} \times \vec{A}$ where \vec{A} (called the vector potential) is a vector function of x, y, z, t. If the position vector $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$ of the charge q is a function of time t show that $\frac{d\vec{A}}{dt} = \frac{\partial \vec{A}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{A}$. (Hint...you don't necessarily have to use index notation here. Think of how you would define $d\vec{A}$ in terms of partial derivatives).