Assignment IV, PHYS 301 (Classical Mechanics) Spring 2017 Due $2/24/17$ at start of class

- 1. A particle of mass m is subject to the potential energy function $U(x) = -Ax^3e^{-\alpha x}$. You may assume A and α are positive real constants, and x is constrained between 0 and $+\infty$.
	- a) Find x_o (the x coordinate associated with the stable equilibrium)
	- b) Find $U(x_0)$.
	- c) What is the angular frequency of small oscillations about the stable equilibrium?
- 2. This problem deals with another common potential function called the Lennard-Jones potential that was proposed in 1924 by John Lennard-Jones to try to approximate the interaction between a pair of neutral atoms or molecules. (In class, I referred to this as a "6-12" potential). We will use the following form of the Lennard-Jones potential:

$$
U(r)=4\epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

where σ and ϵ are constants. (Note that σ is a radial distance, and at $r = \sigma$ the potential is zero.)

- a) Find the radial position of minimum potential energy for this potential.
- b) Find the value of the potential energy at this minimum.
- c) What is the angular frequency of small oscillations about this minimum for a classical mass of magnitude m ? (Keep simplifying to avoid any roots within roots).
- 3. When setting up the equations for pendulum motion, ultimately you end up with an equation that looks very similar to the equations of motion for a spring system. In fact, if you use the approximation $\sin \theta = \theta$, the two equations are functionally identical. Let's complicate matters a little bit.

The small angle approximation of $\sin \theta \approx \theta$ is pretty good for small angles, but a better approximation is $\sin \theta \approx \theta - \frac{\theta^3}{6}$ $\frac{b}{6}$. If you use this relationship instead, you find that the force function takes the general form:

$$
\vec{F} = -k \left(x - \frac{x^3}{6a^2} \right) \hat{x}
$$

with k and a positive constants.

- a) Find the potential energy function associated with the above force if $U(x = 0) = U_0$.
- b) There are three positions of equilibrium for the above force. Find them.
- c) For each of the positions of equilibrium, identify if they are a stable or unstable equilibrium. (Although you might be able to reason this out physically, support your answer with a computation.)
- 4. A stick of length ℓ and mass m is connected via a spring with spring constant k to a fixed post. The stick is uniform, thus its center of mass is a distance $\ell/2$ from each end. When the stick is oriented vertically, the spring is at its unstretched length of d (equal to the distance between the base of the fixed post and the bottom of the stick. The stick is attached to Earth with a frictionless pivot. The spring is free to move vertically along the post (no friction), but it is affixed to the stick a distance $\alpha\ell$ from the fixed end. $(0 \le \alpha \le 1)$. Let the angle with respect to the vertical be marked as ϕ . NOTE: The following fact will be useful several times in this problem – you may assume that $mg < 2k\alpha^2\ell$.
	- a) Find a potential energy function $U(\phi)$ for this system. Your answer should be in terms only of k, d, m, fundamental constants, and (of course) ϕ . Define $U = 0$ when $\phi = 0$.
	- b) Find any point(s) of equilibrium for this system.
	- c) For each point of equilibrium, identify the point as a stable or unstable equilibrium.

- 5. We talked about this in class, so I doubt this comes as a surprise. Consider an undamped simple harmonic oscillator with solution $x(t) = A \cos(\omega_0 t)$. Calculate the *spatial* average of the kinetic and potential energies in terms of variables $A, \omega_{\rm o}, k$, and/or m. (You may assume that total energy of the system is $\frac{1}{2}kA^2$ and it is conserved at all times and all places). Remember – we found that the *time* average of T was equal to the *time average* of U. In this scenario, you should find them unequal.
- 6. The squared amplitude of the damped-driven harmonic oscillator can be written:

$$
A^{2} = \frac{f_{\circ}^{2}}{(\omega_{\circ}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}
$$

- a) Assume β is small compared to ω_{\circ} . Since the numerator is constant, the expression for $A(\omega)$ is maximized when the denominator is at a minimum. Show that, for $\beta \ll \omega_0$, the denominator is minimized when $\omega \approx \omega_{\text{o}} \left(1 - \frac{\beta^2}{\omega^2}\right)$ $\overline{\omega_{\circ}^2}$). (Note! I want you to remember that this is not when $\omega = \omega_0!$).
- b) Let $\omega_1 = \omega_{\rm o} \left(1 \frac{\beta^2}{\omega^2}\right)$ $\overline{\omega_{\circ}^2}$). Calculate/find the first non-zero term of $\frac{A(\omega_1)}{A(\omega_0)} - 1$.
- 7. If the amplitude of a damped oscillator decreases to e^{-1} of its initial value after n cycles, show that the frequency of the oscillator must be approximately:

$$
\omega \approx \omega_{\rm o} \left(1 - \frac{1}{8\pi^2 n^2} \right)
$$

where ω_{\circ} is the frequency of the corresponding oscillator without any damping.