
Homework 4, PHYS 415 (Fluid Mechanics)
Spring 2019

Due Thursday 31st January 2019 at Beginning of Class

As always, turn in your legible and annotated work on separate paper.

1. An incompressible fluid of density ρ fills two right circular cylinders of radius R1 and
R2 to height h1 and h2, respectively. Find an expression for the work done by the
gravitational force in equalizing the levels in the cylinders if a valve in a small tube
connecting them at their bases is released, allowing free flow from one cylinder to the
other to equalize the fluid heights. You may assume h1 > h2. Only h1, h2, R1, R2, and
fundamental constants may appear in your answer.

2. The velocity components in an unsteady plane flow are given by vx = αt2

3x2
and vy =

4yβt3e−ωt with α, β, and ω constants.

a) What are the units of α, β, and ω?

b) Find the equation of the streamline that passes through the the point x = x◦ and
y = y◦ at t = 0.

c) Find the parametric equations of the path-line that goes through the point x = x◦
and y = y◦ at t = 0. (In other words, I want an expressions for x(t) and y(t) with
x(t = 0) = x◦ and y(t = 0) = y◦.

d) The answer to the y component in the above part of the problem is messy. Let
α = 300, β = 1, and ω = 2 (all with their proper SI units that you should have
computed in part (a)). Let a fluid parcel be at x = 2.45 m and y = −1.35 m at
t = 0. Where will the fluid parcel be at t = 0.4 s? (I’m looking for a numerical
answer – give me x and y coordinates to 3 significant figures).

3. Show (either by direct computation or through convincing argument) that all of the
elements on the diagonal of the rotation tensor rij are zero and that rTij = −rij (aka
rij is antisymmetric).
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4. In class, I asked if anyone had solved the compressible atmosphere hydrostatic balance
problem, and I was surprised at how few of you had seen it (I asked Dr. Williams,
and he suggested that maybe that those of you who took Synoptic Meteorology and/or
Thermodynamics in the past may not have been as forthcoming as you should have
been, because you’ve definitely seen it). Either way, we’ll attack it here. To mimic the
Earth’s atmosphere, let’s assume that you have a tall (many-km) column of gaseous
nitrogen within the Earth’s gravitational field. The gas is in thermal equilibrium
at constant temperature T but the concentration of gas molecules per unit volume
n is allowed to vary with height (in other words, we’re explicitly not talking about
an incompressible fluid – which makes sense; you can squeeze gas without too much
difficulty). Let’s choose z = 0 to be the surface of the Earth and let z increase upwards,
so that n(z) will decrease with increasing z.

a) Similar to what I did for an incompressible fluid, use force balance on a parcel of
the gas to justify P (z) = P (z + ∆z) + mg[n(z)](∆z) where m is the mass of an
average Nitrogen molecule.

b) Use the above equation to construct a differential equation, and solve it to find
P (z) given that P (z = 0) = P◦. Note – you will want to use the ideal gas law
PV = NkT to replace n(z) in terms of more convenient quantities relevant to
your differential equation. Even though our column of nitrogen is tall, you may
assume g is constant.

c) The height at which the number density falls to 1/e of its surface value is called
the “e-folding” height. Use your result to part (b) above to numerically determine
the e-folding height of the Earth’s atmosphere if it were isothermal at 300K.

d) The atmosphere of Mars is almost entirely Carbon Dioxide. Look up any requisite
quantities necessary for Mars (remember, g is different there!) and numerically
determine the e-folding height of the Martian atmosphere.
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