Assignment V, PHYS 272 (MAP)
 Fall 2014
 Due $9 / 26 / 14$ at start of class

1. The following matrix is symmetric, therefore it should have orthogonal eigenvectors.

$$
A=\left(\begin{array}{ccc}
3 & -1 & 3 \\
-1 & 7 & -1 \\
3 & -1 & 3
\end{array}\right) \quad B=\left(\begin{array}{ccc}
-3 & 4 & 3 \\
4 & 5 & 1 \\
3 & 1 & 12
\end{array}\right)
$$

a) Find the eigenvalues and the (normalized) eigenvectors for matrix A .
b) Explicitly show the eigenvectors for matrix A are mutually orthogonal to each other.
c) Find the eigenvalues and the (normalized) eigenvectors for matrix B .
d) Explicitly show the eigenvectors for matrix B are mutually orthogonal to each other.
2. We mentioned in class that the following matrix describes a rotation via angle ϕ with respect to the z axis:

$$
M=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Find the eigenvalues and eigenvectors of the above matrix, and comment on them. (Do they make sense? Why or why not?)

MORE ON BACK!

Vector Calculus Review Time!!!
Let:

$$
\begin{array}{r}
\vec{a}=y z \hat{x}+x z \hat{y}+x y \hat{z} \\
\vec{b}=x^{2} e^{-z} \hat{x}+y^{3} \ln (x) \hat{y}+z \cosh (i y) \hat{z} \\
\vec{c}=r^{2} \hat{r} \\
\vec{d}=\frac{1}{s^{2}} \hat{s}
\end{array} \begin{array}{r}
\text { (spherical coordinates) } \\
\\
\\
h=r^{3}
\end{array} \begin{array}{r}
\text { (spherindrical coordinates) } \\
g=3 x^{2} y z \\
\text { (sposh }(x y) \\
\hline
\end{array}
$$

3. Compute the following:
a) $\vec{\nabla} \cdot \vec{a}$
b) $\vec{\nabla} \cdot \vec{b}$
c) $\vec{\nabla} \cdot \vec{c}$
d) $\vec{\nabla} \cdot \vec{d}$
e) $\vec{\nabla} \times \vec{a}$
f) $\vec{\nabla} \times \vec{b}$
g) $\vec{\nabla} \times \vec{c}$
h) $\vec{\nabla} \times \vec{d}$
i) $\vec{\nabla} f$
j) $\vec{\nabla} g$
k) $\vec{\nabla} h$
l) $\nabla^{2} f$ (if you haven't seen ∇^{2} before, this means $\vec{\nabla} \cdot(\vec{\nabla} f)$).
m) $\nabla^{2} g$
n) $\nabla^{2} h$
