Assignment VI, PHYS 308

NOTE: Just like last homework, please leave your answers in terms of actual numbers (with appropriate units) when possible. Please provide full, legible, easy to follow solutions to the following problems. I can't give you credit if I can't read it (or I can't follow your reasoning). Extensive exposition on your thought process or strategy is always appreciated.

1. Assume the temperature at ground level is 300 K . Also assume that we're talking about diffusion in air with $\mu=1.7 \times 10^{-5} \mathrm{~kg} / \mathrm{m} / \mathrm{s}$.
a) Calculate the diffusion constant D for a $100 \mu \mathrm{~m}$ aerosol particle. (You may assume $C_{C}=1$).
b) How long would it take a collection of $1 \mu \mathrm{~m}$ aerosol particles to diffuse from the center to the edges of a basketball in still air at 300 K ? (In other words, how long until the RMS distance traveled by each aerosol would match the radius of a basketball?)
c) What would C_{C} be for a 50 nm diameter aerosol? Use $C_{C}=1+\mathrm{Kn}\left(1.257+\mathrm{e}^{-1.1 / \mathrm{Kn}}\right)$ with $\ell=8 \times 10^{-7} \mathrm{~m}$.
d) What is the diffusion constant D for the 50 nm aerosol particle in part (c)?
e) How long would it take a collection of 50 nm aerosol particles to diffuse from the center to the edges of a basketball in still air at 300 K ? (In other words, how long until the RMS distance traveled by each aerosol would match the radius of a basketball?)
f) What is the ratio:
$\underline{\text { rms distance diffused by } 50 \mathrm{~nm} \text { aerosol particles in } 37.5 \text { days }}$

$$
\text { rms distance diffused by } 1 \mu \mathrm{~m} \text { aerosol particles in } 37.5 \text { days }
$$

2. Consider the function $n(x, t)=n_{\circ}+\frac{\Delta N}{(4 \pi D t)^{1 / 2}} \exp \left[-x^{2} /(4 D t)\right]$.
a) We will verify that $n(x, t)$ above is a valid solution to the differential equation $\frac{\partial n}{\partial t}=D \frac{\partial^{2} n}{\partial x^{2}}$. First, calculate $\frac{\partial n}{\partial t}$
b) Now calculate $\frac{\partial n}{\partial x}$
c) Now calculate $\frac{\partial^{2} n}{\partial x^{2}}$
d) Now multiply $\frac{\partial^{2} n}{\partial x^{2}}$ by D and show you get something equivalent to $\frac{\partial n}{\partial t}$.
e) Consider the integral $\int_{-\infty}^{\infty}\left[n(x, t)-n_{\circ}\right] \mathrm{d} x$. Evaluate it. (You may have to look up the "error function").
f) What is the value of the integral $\int_{-X}^{X}\left[n(x, t)-n_{\circ}\right] \mathrm{d} x$? (You may leave your answer in terms of error functions and or complementary error functions.)
