Assignment VI, PHYS 412 (MAP)
 Fall 2014
 Due 10/03/14 at start of class

1. Write the following equations in index notation. The tilde symbol above a variable (e.g. \widetilde{A}) indicates a matrix. (All of the equations below should be well-defined).
a) $\vec{f}=\vec{a}+\vec{b} \times \vec{c}$
b) $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{f} \cdot \vec{g})|\vec{h}|^{2} \vec{k}$
c) $\widetilde{A} \vec{x}-(\vec{y} \times \vec{z})=\vec{b}$
d) $\vec{\nabla} \phi+\vec{\nabla} \times \vec{a}=(\vec{\nabla} \cdot \vec{b}) \vec{c}$
e) $\left(\nabla^{2} \phi\right) \vec{a}+\widetilde{B} \vec{c}=\vec{d} \times \vec{f}$
f) $\frac{\partial^{2} \vec{u}}{\partial t^{2}}=|\vec{v}|^{2} \nabla^{2} \vec{u}$
g) $\frac{-\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial \Psi}{\partial t}$
h) $\vec{u}+(\vec{a} \cdot \vec{b}) \vec{v}=|\vec{a}|^{2}(\vec{b} \cdot \vec{v}) \vec{a}$
2. Use index notation to demonstrate the following:
a) $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$
b) $\vec{\nabla} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\vec{\nabla} \times \vec{a})-\vec{a} \cdot(\vec{\nabla} \times \vec{b})$
c) $\vec{\nabla} \times(\vec{\nabla} \phi)=0$
d) $\vec{\nabla} \times(\vec{\nabla} \times \vec{a})=\vec{\nabla}(\vec{\nabla} \cdot \vec{a})-\nabla^{2} \vec{a}$
3. The Helmholtz theorem tells us that any vector \vec{F} can be written as the negative gradient of a scalar field plus the curl of a vector field. i.e.:

$$
\vec{F}=-\vec{\nabla} V+\vec{\nabla} \times \vec{E}
$$

a) Rewrite the above vector equation in index notation.
b) Manipulate the expression in part (a) to show that $\vec{\nabla} \times \vec{F}=\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\nabla^{2} \vec{E}$. (This doesn't mean just referencing some source that argues that this is true; it means manipulating the index notation to clearly progress from the expression in part (a) to something equivalent to the above in index notation).
4. Use index notation to simplify / rewrite the following to the number of terms specified. (Let ϕ be an arbitrary scalar function and \vec{a} be an arbitrary vector function):
a) $\vec{\nabla} \times(\phi \vec{\nabla} \phi)$ (when simplified, this can be written as a single term).
b) $\vec{\nabla} \cdot(\phi \vec{\nabla} \phi)$ (when rewritten, this should have two terms).
c) $\vec{\nabla} \times(\phi \vec{a})$ (when rewritten, this should have two terms).
5. Simplify the following expressions:
a) $\delta_{i j} \delta_{i j}$
b) $\delta_{i j} \delta_{j k} \delta_{k i}$
c) $\epsilon_{i j k} \epsilon_{m j k}$
d) $\epsilon_{i j k} \epsilon_{i j k}$
e) $\delta_{i j} \epsilon_{j k m}$
6. Let $\hat{r}(t) \cdot \hat{r}(t)=1$. Differentiate both sides of the equation. Based on your result, what is the geometrical relationship between \hat{r} and $\dot{\hat{r}}$ (the time derivative of \hat{r})? (This should teach you - or remind you about a property of polar coordinates. If you have no idea what I'm talking about, don't worry.)
7. The force on a charge q moving with velocity $\vec{v}=\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}$ in a magnetic field \vec{B} is $\vec{F}=q(\vec{v} \times \vec{B})$. Since $\vec{\nabla} \cdot \vec{B}=0$, we can write \vec{B} as $\vec{B}=\vec{\nabla} \times \vec{A}$ where \vec{A} (called the vector potential) is a vector function of x, y, z, t. If the position vector $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$ of the charge q is a function of time t show that $\frac{\mathrm{d} \vec{A}}{\mathrm{~d} t}=\frac{\partial \vec{A}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{A}$. (Hint...you don't necessarily have to use index notation here. Think of how you would define $\mathrm{d} \vec{A}$ in terms of partial derivatives).

