Assignment VI, PHYS 412 (MAP) Fall 2014 Due 10/03/14 at start of class

1. Write the following equations in index notation. The tilde symbol above a variable (e.g. \widetilde{A}) indicates a matrix. (All of the equations below should be well-defined).

a)
$$\vec{f} = \vec{a} + \vec{b} \times \vec{c}$$

b)
$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{f} \cdot \vec{g}) |\vec{h}|^2 \vec{k}$$

c)
$$\widetilde{A}\vec{x} - (\vec{y} \times \vec{z}) = \vec{b}$$

d)
$$\vec{\nabla}\phi + \vec{\nabla} \times \vec{a} = (\vec{\nabla} \cdot \vec{b})\vec{c}$$

e)
$$(\nabla^2 \phi) \vec{a} + \widetilde{B} \vec{c} = \vec{d} \times \vec{f}$$

f)
$$\frac{\partial^2 \vec{u}}{\partial t^2} = |\vec{v}|^2 \nabla^2 \vec{u}$$

g)
$$\frac{-\hbar^2}{2m} \nabla^2 \Psi + V \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

h)
$$\vec{u} + (\vec{a} \cdot \vec{b})\vec{v} = |\vec{a}|^2(\vec{b} \cdot \vec{v})\vec{a}$$

2. Use index notation to demonstrate the following:

a)
$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$

b)
$$\vec{\nabla} \cdot (\vec{a} \times \vec{b}) = \vec{b} \cdot (\vec{\nabla} \times \vec{a}) - \vec{a} \cdot (\vec{\nabla} \times \vec{b})$$

c)
$$\vec{\nabla} \times (\vec{\nabla}\phi) = 0$$

d)
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{a}) = \vec{\nabla}(\vec{\nabla} \cdot \vec{a}) - \nabla^2 \vec{a}$$

3. The Helmholtz theorem tells us that any vector \vec{F} can be written as the negative gradient of a scalar field plus the curl of a vector field. i.e.:

$$\vec{F} = -\vec{\nabla}V + \vec{\nabla} \times \vec{E}$$

- a) Rewrite the above vector equation in index notation.
- b) Manipulate the expression in part (a) to show that $\vec{\nabla} \times \vec{F} = \vec{\nabla}(\vec{\nabla} \cdot \vec{E}) \nabla^2 \vec{E}$. (This doesn't mean just referencing some source that argues that this is true; it means manipulating the index notation to clearly progress from the expression in part (a) to something equivalent to the above in index notation).

MORE ON BACK!!!

- 4. Use index notation to simplify / rewrite the following to the number of terms specified. (Let ϕ be an arbitrary scalar function and \vec{a} be an arbitrary vector function):
 - a) $\vec{\nabla} \times (\phi \vec{\nabla} \phi)$ (when simplified, this can be written as a single term).
 - b) $\vec{\nabla} \cdot (\phi \vec{\nabla} \phi)$ (when rewritten, this should have two terms).
 - c) $\vec{\nabla} \times (\phi \vec{a})$ (when rewritten, this should have two terms).
- 5. Simplify the following expressions:
 - a) $\delta_{ij}\delta_{ij}$
 - b) $\delta_{ij}\delta_{jk}\delta_{ki}$
 - c) $\epsilon_{ijk}\epsilon_{mjk}$
 - d) $\epsilon_{ijk}\epsilon_{ijk}$
 - e) $\delta_{ij}\epsilon_{jkm}$
- 6. Let $\hat{r}(t) \cdot \hat{r}(t) = 1$. Differentiate both sides of the equation. Based on your result, what is the geometrical relationship between \hat{r} and $\dot{\hat{r}}$ (the time derivative of \hat{r})? (This should teach you or remind you about a property of polar coordinates. If you have no idea what I'm talking about, don't worry.)
- 7. The force on a charge q moving with velocity $\vec{v} = \frac{d\vec{r}}{dt}$ in a magnetic field \vec{B} is $\vec{F} = q(\vec{v} \times \vec{B})$. Since $\vec{\nabla} \cdot \vec{B} = 0$, we can write \vec{B} as $\vec{B} = \vec{\nabla} \times \vec{A}$ where \vec{A} (called the vector potential) is a vector function of x, y, z, t. If the position vector $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$ of the charge q is a function of time t show that $\frac{d\vec{A}}{dt} = \frac{\partial \vec{A}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{A}$. (Hint...you don't necessarily have to use index notation here. Think of how you would define $d\vec{A}$ in terms of partial derivatives).