Assignment VII, PHYS 272 (MAP)
 Fall 2014
 Due 10/24/14 at start of class

1. Let $\vec{H}=\left(2 x y-z^{3}\right) \hat{x}+x^{2} \hat{y}+\left(\alpha x z^{2}-1\right) \hat{z}$.
a) If \vec{H} is a conservative vector field, what must α be?
b) Using the value of α found in part (a), calculate:

$$
\int_{\overrightarrow{P_{1}}}^{\overrightarrow{P_{2}}} \vec{H} \cdot \mathrm{~d} \vec{\ell}
$$

if $\overrightarrow{P_{1}}=\overrightarrow{0}$ and $\overrightarrow{P_{2}}=\hat{x}+2 \hat{y}+3 \hat{z}$. (Note; if you've done part (a) right, this shouldn't depend on your path. A good check on part (a) would be to do this via two different routes and see if you come up with the same thing).
c) Using the value of α found in part (a), find ϕ if $\vec{H}=\vec{\nabla} \phi$.
2. Let us define:

$$
\begin{array}{r}
\vec{a}=(r \cos \theta) \hat{r}+(r \sin \theta) \hat{\theta}+(3 r \sin \theta \cos \phi) \hat{\phi} \\
\vec{b}=s\left(3+\sin ^{2} \phi\right) \hat{s}+s \sin \phi \cos \phi \hat{\phi}+3 z^{2} \hat{z}
\end{array}
$$

(If it wasn't obvious from context or the variables used, \vec{a} is described in spherical coordinates, and \vec{b} is described in cylindrical coordinates). Find the following:
a) The divergence of \vec{a}.
b) The curl of \vec{a}.
c) The divergence of \vec{b}.
d) The curl of \vec{b}.
3. Calculate $\oiiint \vec{L} \cdot \mathrm{~d} \vec{a}$ for $\vec{L}=x \cos ^{2} y \hat{x}+x z \hat{y}+z \sin ^{2} y \hat{z}$ over the surface of a sphere with center at the origin and radius 3 .
4. Given $\varphi=x y+y z+z \sin x$, find:
a) $\vec{\nabla} \varphi$
b) Evaluate $\vec{\nabla} \varphi$ at $-3 \hat{y}+\hat{z}$.
5. Calculate $\oint \vec{M} \cdot \mathrm{~d} \vec{\ell}$ around the boundary of the square with vertices $\langle 1,0\rangle,\langle 0,1\rangle,\langle-1,0\rangle,\langle 0,-1\rangle$ if $\vec{M}=x^{2} \hat{x}+3 x \hat{y}$.
6. What is wrong with the following "proof" that magnetic fields do not exist?

By electromagnetic theory, $\vec{\nabla} \cdot \vec{B}=0$ and $\vec{B}=\vec{\nabla} \times \vec{A}$. (This part is totally legitimate; the error in the proof is not based on the previous sentence). Using the divergence theorem, we can write:

$$
\iiint(\vec{\nabla} \cdot \vec{B}) \mathrm{d} V=0=\oiiint \vec{B} \cdot \mathrm{~d} \vec{a}
$$

However, if we then substitute in $\vec{B}=\vec{\nabla} \times \vec{A}$ we can use Stokes' theorem to write:

$$
\iint(\vec{\nabla} \times \vec{A}) \mathrm{d} \vec{a}=\oint \vec{A} \cdot \mathrm{~d} \vec{r}
$$

Since $\oint \vec{A} \cdot \mathrm{~d} \vec{r}=0$, we know that \vec{A} is conservative, or $\vec{A}=\vec{\nabla} \phi$ for some scalar function ϕ. Then we have $\vec{B}=\vec{\nabla} \times \vec{A}=\vec{\nabla} \times(\vec{\nabla} \phi)=0$, implying $\vec{B}=0$. (Note - this "proof" is wrong. Magnetic fields do exist! The error is somewhere in the Mathematical argument above; detailed knowledge of $\mathrm{E} \& \mathrm{M}$ is not necessary.)
7. Let x be a function of t.
a) If the acceleration $a=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \equiv \ddot{x}=A \sin (\omega t)$ for some constants A and ω, what is the solution for $x(t)$?
b) The above solution should have two arbitrary constants besides A and ω. If \dot{x} at $t=0$ is 0 and x at $t=0$ is -3 , what is the solution for $x(t)$?
8. The differential equation for a particle moving vertically under the presence of air-resistance can be written as:

$$
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g-\beta v
$$

With β some constant associated with the physical properties of the system.
a) What is the steady-state value (e.g. free-fall speed) of this system? (Hint...what does steady-state mean in terms of $v ?$)
b) If a particle of mass m is dropped from rest, find $v(t)$. (In other words, solve this differential equation under the initial condition $v(t=0)=0)$. A change of variable may be helpful.
9. A spherical drop of an unknown airborne liquid is known to grow at a rate proportional to its surface area, e.g.:

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=\alpha\left(4 \pi r^{2}\right)
$$

with m the mass of the drop and the proportionality constant α unknown. The mass of the drop is equal to its volume multiplied by a constant (known) mass density ρ_{\circ}. If the spherical drop originally has a radius of $20 \mu \mathrm{~m}$ and evaporates to a radius of $10 \mu \mathrm{~m}$ after 7 minutes, how long will/does it take for the radius of the initially $20 \mu \mathrm{~m}$ drop to evaporate down to a sphere with a $2 \mu \mathrm{~m}$ radius?
10. A spherical ball at the origin of radius R has, enclosed within it, a mass density that follows the relationship $\rho(r, \theta)=3 \alpha r^{3} \cos ^{2}(\theta)$. (Obviously, this relationship is only valid for $r<R$, since - for $r>R$ - we're not talking about the "innards" of the ball anymore). For a hypothetical ball of radius r centered at the origin, what would be the mass enclosed? (r could, in principle, be smaller than or larger than R; your answer should be a piecewise defined function of the type:

$$
m(r)= \begin{cases}m_{1}(r) & r<R \\ m_{2}(r) & r>R\end{cases}
$$

Your task here is to find $m_{1}(r)$ and $m_{2}(r)$. (Note, $\mathrm{d} V$ in spherical coordinates is NOT $\mathrm{d} r \mathrm{~d} \theta \mathrm{~d} \phi$, but rather $\left.r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi\right)$. Note also, don't read anything into this - this doesn't totally fit into this section of the class, but it doesn't really fit anywhere else, either - but people have always struggled with doing this sort of thing in E\&M and I want you to have an advantage when you get to that class.

