Assignment VIII, PHYS 230 (Modern Physics)

Fall 2019 Due Thursday November 14th, 2019 at Start of Class

As always, turn your legible and complete answers in on separate paper. Remember, I can't give partial credit unless I can follow what you've done. Including words is usually a good thing for you.

The last problem involves you writing three different MATLAB functions; as usual, please email them to me at LarsenML@gmail.com

Since we are dealing with some abstract stuff, the homework this week is a bit more straightforward than normal - mostly problems out of the text.

1. (Problem 6-3 from your text) In a region of space, a particle has a wave function given by $\psi(x)=A \exp \left(-x^{2} / 2 L^{2}\right)$ and energy $\hbar^{2} / 2 m L^{2}$, where L is some length. (a) Find the potential energy as a function of x, and sketch (i.e. graph) V versus x. (b) What is the classical potential that has this dependence?
2. (Problem 6-10 from your text) A particle is in the ground state of an infinite square well potential given by Equation 6-21:

$$
V(x)= \begin{cases}0 & 0<x<L \\ \infty & x<0 \text { and } x>L\end{cases}
$$

Find the probability of finding the particle in the interval $\Delta x=0.002 L$ at (a) $x=L / 2$, (b) $x=2 L / 3$, and (c) $x=L$. (Since Δx is very small, you need not do any integration - the probability is effectively equal to $\left.\psi^{*}(x) \psi(x) \Delta x\right)$.
3. (Problem 6-11 from your text) Do problem 6-10 for a particle in the second excited state $(n=3)$ of an infinite square well potential.
4. Use your answers from the above two problems to discuss the large n limit (i.e. what happens when the correspondence principle applies). What would you expect your answers to parts (a), (b), and (c) from the above two problems to be when $n \rightarrow \infty$?
5. (Problem 6-18 from your text) Suppose a macroscopic bead with a mass of 2.0 grams is constrained to move on a straight frictionless wire between two heavy stops clamped firmly to the wire 10 cm apart. If the bead is moving at a speed of 20 nanometers per year (i.e. to all appearances it is at rest), what is the value of its quantum number, n ?
6. (Problem 6-56 from your text) For the wave functions:

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad n=1,2,3, \ldots
$$

corresponding to an infinite square well of width L, show that:

$$
\left\langle x^{2}\right\rangle=\frac{L^{2}}{3}-\frac{L^{2}}{2 n^{2} \pi^{2}}
$$

MATLAB problem on following page!
7. The normalized eigenfunction solutions to the infinite square well potential are as follows:

$$
\psi_{n}(x)= \begin{cases}\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \leq L \\ 0 & x<0 \text { or } x>L\end{cases}
$$

with the energies associated with each state equal to:

$$
E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}}
$$

a) Build a MATLAB function named YourLastName_boxenergy.m that takes in m, L, and n as inputs and outputs the energy associated with the level in Electron Volts!. In other words, after I have saved your file, I should be able to type YourLastName_boxenergy $(2.3 \mathrm{e}-15,1 \mathrm{e}-8,37)$ and your code will return the energy in electron volts of a particle with a mass of $2.3 \times 10^{-15} \mathrm{~kg}$ in a one dimensional infinite potential well with width $1 \times 10^{-8} \mathrm{~m}$ and in the 37 th energy state. (It should also work for other values of m, L, and n).
b) Use MATLAB to write a different function named YourLastName_boxwidth.m that takes in an energy (in eV) and outputs the box width for an electron to have the specified energy as the ground state energy. For example, if I were to type YourLastName_boxwidth(13.6) it should give back 1.66×10^{-10}. (This time you don't have to explicitly write units in your responding result; I will assume the answer is in meters). Your code should also work for other energies.
c) Use MATLAB to generate a function named YourLastName_infwell.m that takes in three arguments $-n, L$, and $a . n$ indicates the state of the wave-function (e.g. $n=1$ indicates the ground state, $n=2$ indicates the next state, etc.). L indicates the width of the one-dimensional infinite square well (in meters). a is a variable that can take the value 0 or 1 ; it is equal to 0 if you want to plot the wave function itself, and a is equal to 1 if you want to plot $\psi^{*}(x) \psi(x)$. In either case, you are plotting the wave function (or the probability) as a function of L for a particle in state n. For example, you would be able to use the code you write to generate any of the different parts of Figure 6-4 in your text. Running your code by typing YourLastName_infwell $(2,1,1)$ would produce a plot like the one on the right side of the second row of figure 6-4 (except L would be replaced with 1 everywhere).

