Assignment IX, PHYS 230 (Introduction to Modern Physics) Spring 2017
 Due Wednesday, 4/6/17 at start of class

Recall that the definition of "phase velocity" $v_{p}=\frac{\omega}{k}$ and that the definition of "group velocity" is $\frac{\mathrm{d} \omega}{\mathrm{d} k}$.

1. Show that $v_{g}=v_{p}+k \frac{\mathrm{~d} v_{p}}{\mathrm{~d} k}$
2. In order to locate a particle to within 5×10^{-12} meters using light, the wavelength of the light must be at most 5×10^{-12} meters.
a) Calculate the energy of a photon with $\lambda=5 \times 10^{-12} \mathrm{~m}$.
b) Calculate the momentum of a photon with $\lambda=5 \times 10^{-12} \mathrm{~m}$.
c) If this light bounces off an electron leaving an uncertainty $\Delta x=5 \times 10^{-12} \mathrm{~m}$ to its position, what is the minimum uncertainty in the electron's momentum?
3. An excited state of a certain nucleus has a half-life of 2.3 ns .
a) Taking this to be the uncertainty Δt for emission of a photon, calculate the minimum uncertainty in the frequency of the emitted light.
b) If the emitted light is expected to have a wavelength 0.05 nm , what is $\Delta f / f$ for this light? $(\Delta f / f$ can be interpreted as the fractional uncertainty of the frequency).
4. Wave functions must be "normalized". In other words, the integral:

$$
\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=1
$$

for a 1-dimensional system. Recall that Ψ^{*} indicates the complex conjugate and, if Ψ doesn't have any complex quantities (no imaginary numbers), then $\Psi^{*}=\Psi$. Let $\Psi(x, 0)=A|x| e^{(-k|x|)}$, with A and k unspecified constants. Find what A has to be in terms of k so that the wave function is properly "normalized". (You may use on-line resources, integral tables, and/or computational tools to do the necessary integral for you. Be careful with the absolute values, though).
5. If we know that the integral $\int_{-\infty}^{\infty} \Psi^{*} \Psi \mathrm{~d} x=1$, what do the units of Ψ have to be?
6. The wave function describing a state of an electron confined to move along the x axis is given at time zero by:

$$
\Psi(x, 0)=A e^{-x^{2} /\left(4 \sigma^{2}\right)}
$$

a) Where is the electron most likely to be found?
b) What is the probability of finding the electron in a region $\mathrm{d} x$ centered at $x=0$?
c) What is the probability of finding the electron in a region $\mathrm{d} x$ centered at $x=\sigma$?
d) What is the probability of finding the electron in a region $\mathrm{d} x$ centered at $x=2 \sigma$?

