Peer Reviewed Publications Coming out of the Larsen Lab (by Year)

2023 (CofC)

2022 (CofC)

N. Allwayin, M.L. Larsen, A.G. Shaw, and R.A. Shaw. Automated Identification of Characteristic Droplet Size Distributions in Stratocumulus Clouds Utilizing a Data Clustering Algorithm. Artificial Intelligence for the Earth Systems. 1. doi: 10.1175/AIES-D-22-0003.1

A.R. Jameson and M.L. Larsen. Preliminary statistical characterizations of the lowest kilometer time-height profiles of the rainfall rate using a vertically pointing radar. Atmosphere. 13, 635. Special Issue on "Advances on Remote Sensing of Precipitation" doi: 10.3390/atmos13040635

2021 (CofC)

A.R. Jameson, M.L. Larsen, and D.B. Wolff. Improved estimates of the vertical structures of rain using single frequency Doppler radars. Atmosphere. 12, 699. doi: 10.3390/atmos12060699

2020 (CofC)

S. Glienke, A.B. Kostinski, R.A. Shaw, M.L. Larsen, J.P. Fugal, O. Schlenczek, and S. Borrmann. Holographic observations of centimeter-scale nonuniformities within marine stratocumulus clouds. Journal of the Atmospheric Sciences. 77, 499. doi: 10.1175/JAS-D-19-0164.1

M.L. Larsen and C.K. Blouin. Refinements to Data Acquired by 2-Dimensional Video Disdrometers. Atmosphere. 11, 855. Special Issue on "Measurement and Modeling of the Precipitation Particle Size Distribution" doi: 10.3390/atmos11080855

N.N. Lata, J. Zhou, P. Hamilton, M.L. Larsen, S. Sarupria, and W. Cantrell. Multivalent Surface Cations Enhance Heterogeneous Freezing of Water on Muscovite Mica. The Journal of Physical Chemistry Letters. 2020, 11, 8682--8689. doi: 10.1021/acs.jpclett.0c02121

C.D. Packard, M.L. Larsen, S. Thomas, W.H. Cantrell, and R.A. Shaw. Light scattering in a turbulent cloud: Simulations to explore cloud-chamber experiments. Atmosphere. 11(8), 837. Special Issue on "The Motion of Particles in Turbulence" doi: 10.3390/atmos11080837

2019 (CofC)

C.D. Packard, M.L. Larsen, W.H. Cantrell, and R.A. Shaw. Light scattering in a spatially-correlated particle field: Role of the radial distribution function. Journal of Quantitative Spectroscopy and Radiative Transfer. 236, 106601. doi: 10.1016/j.jqsrt.2019.106601.

2018 (CofC + MTU [Sabbatical])

A.R. Jameson, M.L. Larsen, and A.B. Kostinski. On the detection of statistical heterogeneity in rain measurements. Journal of Atmospheric and Oceanic Technology. 35, 1399--1413. doi: 10.1175/JTECH-D-17-0161.1

M.L. Larsen and M.Schoenhuber. Identification and characterization of an anomaly in 2-dimensional video disdrometer data. Atmosphere. 9, 315. doi: 10.3390/atmos9080315.

M.L. Larsen, R.A. Shaw, A.B. Kostinski, and S. Glienke. Fine-scale droplet clustering in atmospheric clouds: 3D radial distribution function from airborne digital holography. Physical Review Letters. 121, 204501. doi: 10.1103/PhysRevLett.121.204501
PRESS AND RECOGNITION
    Selected as an Editor's Suggestion and for a Viewpoint Article
    Cloud Drops Stick Together (Viewpoint Article in Physics) by Rudie P.J. Kunnen (11/12/2018)
    Research Update in Physics World by Michael Allen (11/22/2018)
    CofC Professor Takes a New Look at Clouds, press release in The College Today by Mike Robertson (12/10/2018)
    The Secret Life of Cloud Droplets, article at Phys.org by Kelley Christensen (12/13/2018)
    Droplet clustering inside clouds confirmed by airborne digital holography, article at Space Daily (12/20/2018)
    GOOD NEWS: CofC cloud study, new United Way CEO, more, article at CharlestonCurrents (1/7/2019)

M.L. Larsen and R.A. Shaw. A method for computing the three-dimensional radial distribution function of cloud particles from holographic images. Atmospheric Measurement Techniques Discussion doi: 10.5194/amt-2018-60

M.L. Larsen and R.A. Shaw. A method for computing the three-dimensional radial distribution function of cloud particles from holographics images. Atmospheric Measurement Techniques. 11, 4261--4272. doi: 10.5194/amt-11-4261-2018.

2017 (CofC + MTU [Sabbatical])

2016 (CofC)

A.R. Jameson and M.L. Larsen. Estimates of the statistical two-dimensional spatial structure in rain over a small network of disdrometers. Meteorology and Atmospheric Physics 128, 401--413. doi: 10.1007/s00703-016-0438-0

A.R. Jameson and M.L. Larsen. The variability of rainfall rate as a function of area. Journal of Geophysical Research: Atmospheres 121. doi: 10.1002/2015JD024126

A.R. Jameson, M.L. Larsen, and A.B. Kostinski. An example of persistent microstructure in a long rain event. Journal of Hydrometeorology 17, 1661--1673. doi: 10.1175/JHM-D-15-0180.1

M.L. Larsen and K. O'Dell. Sampling variability effects in drop-resolving disdrometer observations. Journal of Geophysical Research: Atmospheres 121. doi: 10.1002/2016JD025491

2015 (CofC)

A.R. Jameson, M.L. Larsen, and A.B. Kostinski. Disdrometer network observations of finescale spatial-temporal clustering in rain. Journal of the Atmopsheric Sciences 72(4), 1648--1666. doi: 10.1175/JAS-D-14-0136.1

A.R. Jameson, M.L. Larsen, and A.B. Kostinski. On the variability of drop size distributions over areas. Journal of the Atmospheric Sciences 72(4), 1386--1397. doi: 10.1175/JAS-D-14-0258.1

M.L. Larsen, T.B. Hayward, and J.B. Teves. Scaling properties of raindrop size distributions as measured by a dense array of optical disdrometers. Journal of Hydrology 521, 424--432. doi: 10.106/j.jhydrol.2014.12.016

M.L. Larsen and J.B. Teves. Identifying individual rain events with a dense disdrometer network. Advances in Meteorology Article ID 582782. doi: 10.1155/2015/582782

2014 (CofC)

M.L. Larsen, C.A. Briner, and P. Boehner. On the recovery of 3D spatial statistics of particles from 1D measurements: Implications for airborne instruments. Journal of Atmospheric and Oceanic Technology 31(10), 2078--2087. doi: 10.1175/JTECH-D-14-00004.1

M.L. Larsen and A.S. Clark. On the link between particle size and deviations from the Beer-Lambert-Bouguer law for direct transmission. Journal of Quantitative Spectroscopy and Radiative Transfer 133, 646--651. doi: 10.1016/j.jsqsrt.2013.10.001

M.L. Larsen, A.B. Kostinski, and A.R. Jameson. Further evidence for super-terminal raindrops. Geophysical Research Letters 41(19), 6914--6918. doi: 10.1002/2014GL061397
PRESS AND RECOGNITION
    Sumner, T. (2014). Raindrops break terminal velocity: Droplets lack clear explanation, could alter weather forecasts. Science News, 186(10), 11. doi: 10.1002/scin.2014.186010010
    Confirmed: Some raindrops fall faster than they should in Science Magazine by Sid Perkins (8/26/14)
    Some Rain Falls at Super-Terminal Speeds in Matzav.com by Andy Heller (8/26/14)
    Raindrops are falling...faster and faster in Today's Science by Chris Larson (9/2014)
    Conversations with Scientists -- Michael L. Larsen: Untangling the World's Mysteries in Today's Science 9/2014)
    Falling raindrops break terminal velocity in ScienceNews by Thomas Sumner (10/15/14)
    Raindrops break the speed limit in Science News for Students by Stephen Ornes (11/7/14)
    Falling Faster--Researchers Confirm Super-Terminal Raindrops in Michigan Tech News by Allison Mills (2/13/15)
    Some Racing Raindrops Break Their "Speed Limit" in LiveScience by Jeanna Bryner (2/18/2015)
    The smaller the drop the faster the rain, C of C research says in The Post and Courier by Bo Petersen (2/28/15)
    Superfast Raindrops Seem to Break the Laws of Physics in IFLScience
      Some of the above press was picked up/reposted by: PhysOrg, reddit, slashdot, Science World, Yahoo

2013 (CofC)

2012 (CofC)

M.L. Larsen. Scale localization of cloud particle clustering statistics. Journal of the Atmospheric Sciences 69(11), 3277--3289. doi: 10.1175/JAS-D-12-02.1

2011 (CofC)

2010 (UNK/CofC)

M.L. Larsen, A. Clark, M. Noffke, G. Saltzgaber, and A. Steele. Identifying the scaling properties of rainfall accumulation as measured by a rain gauge network. Atmospheric Research 96, 149-158. doi: 10.1016/j.atmosres.2009.12.008

2009 (UNK)

M.L. Larsen and A.B. Kostinski. Simple dead-time corrections for discrete time series of non-Poisson data. Measurement Science and Technology 20, 095101. doi: 10.1088/0957-0233/20/9/095101

2008 (UNK)

2007 (ARL/UNK)

M.L. Larsen. Spatial distributions of aerosol particles: Investigation of the Poisson assumption. Journal of Aerosol Science 38(8), 807--822. doi: 10.1016j.jaerosci.2007.06.007

2006 (MTU/ARL)

A.B. Kostinski, M.L. Larsen, and A.R. Jameson. The texture of rain: Exploring stochastic micro-structure at small scales. Journal of Hydrology 328(1-2), 38--45. doi: 10.1016/j.jhhydrol.2005.11.035

2005 (MTU/NASA)

Y. Knizikhin, A. Marshak, M.L. Larsen, W.J. Wiscombe, J.V. Martonchik, and R.B. Myneni. Small-scale drop size variability: Impact on estimation of cloud optical properties. Journal of the Atmospheric Sciences 62(7), 2555--2567. doi: 10.1175/JAS3488.1

M.L. Larsen, A.B. Kostinski, and A. Tokay. Observations and analysis of uncorrelated rain. Journal of the Atmospheric Sciences 62(11), 4071--4083. doi: 10.1175/JAS3583.1

A. Marshak, Y. Knizikhin, M.L. Larsen, and W.J. Wiscombe. Small-scale drop size variability: Empirical models for drop-size-dependent clustering in clouds. Journal of the Atmospheric Sciences 62(2), 551--558. doi: 10.1175/JAS3371.1

2004 (MTU/NASA)

M.L. Larsen, W. Cantrell, A.B. Kostinski, and J. Kannosto. Response from authors to comment on Detection of spatial correlations among aerosol particles. Aerosol Science and Technology 38(2), 129--130. doi: 10.1080/02786820490250863

2003 (MTU)

M.L. Larsen, W. Cantrell, J. Kannosto, and A.B. Kostinski. Detection of spatial correlations among aerosol particles. Aerosol Science and Technology 37(6), 476--485. doi: 10.1080/02786820390126402

2002 (MTU)

R.A. Shaw, A.B. Kostinski, and M.L. Larsen. Towards quantifying droplet clustering in clouds. Quarterly Journal of the Royal Meteorological Society 128(582), 1043--1057. doi: 10.1256/003590002320373193
updated: 17 May 2023