1 "Perfect Randomness" - The Poisson Process

Independent of whether a statistically homogeneous or inhomogeneous approach is used to describe a statistical data-set, the gold-standard of perfect randomness remains the Poisson process.

By construction, a Poisson process is homogeneous. It is as random as randomness allows; there are no extraneous clumps or clusters, but there isn't an anomalous lack of clumps or clusters, either.

A Poisson process is predicated on three assumptions (expanded from the 1-dimensional construction given in the Cramér and Leadbetter (2004) paraphrase of Khintchine 1960):

- The probability that k events will occur in a volume of size V depends on k and the magnitude of V, but not on the location of V.
- The events occurring in disjoint volumes are mutually independent random variables.
- The probability that more than one event occurs in a small volume $\mathrm{d} V$ is $o(\mathrm{~d} V)$ as $\mathrm{d} V \rightarrow 0$.

From this, we can directly derive the measurable properties of a Poisson process (e.g. its distribution function). Following Cramér and Leadbetter (2004) and proceeding in 1-dimension, we can write:

$$
\begin{equation*}
p_{0}\left(t_{1}+t_{2}\right)=p_{0}\left(t_{1}\right) p_{0}\left(t_{2}\right) \tag{1}
\end{equation*}
$$

for any time intervals t_{1} and t_{2}, where $p_{0}(t)$ is the probability of finding no particles in an interval of duration t. This implies, then, that:

$$
\begin{equation*}
p_{0}(t)=\exp (-\lambda t) \tag{2}
\end{equation*}
$$

where λ is positive.

We can use some further tricks from Cramér and Leadbetter (2004) to get the distribution function as well. For small $\mathrm{d} t$ this means that:

$$
\begin{equation*}
p_{0}(\mathrm{~d} t)=1-\lambda \mathrm{d} t+o(\mathrm{~d} t) \tag{3}
\end{equation*}
$$

but if $p_{k>1}(\mathrm{~d} t)$ is negligible as required above, we can then say that:

$$
\begin{equation*}
p_{1}(\mathrm{~d} t)=1-p_{0}(\mathrm{~d} t)+o(\mathrm{~d} t)=\lambda \mathrm{d} t+o(\mathrm{~d} t) \tag{4}
\end{equation*}
$$

In general, then, for arbitrary t and small $\mathrm{d} t$ we have that:

$$
\begin{array}{r}
p_{k}(t+\mathrm{d} t)=p_{0}(\mathrm{~d} t) p_{k}(t)+p_{1}(\mathrm{~d} t) p_{(k-1)}(t) \\
p_{k}(t+\mathrm{d} t)=(1-\lambda \mathrm{d} t) p_{k}(t)+\lambda \mathrm{d} t p_{(k-1)}(t)+o(\mathrm{~d} t) \tag{6}
\end{array}
$$

subtracting $p_{k}(t)$ from both sides and dividing by $\mathrm{d} t$ we get an equation for the derivative of $p_{k}(t)$:

$$
\begin{equation*}
\frac{p_{k}(t+\mathrm{d} t)-p_{k}(t)}{\mathrm{d} t}=p_{k}^{\prime}(t)=\lambda\left[p_{(k-1)}(t)-p_{k}(t)\right] \tag{7}
\end{equation*}
$$

The solution of this differential equation is found to be:

$$
\begin{equation*}
p_{k}(t)=\frac{(\lambda t)^{k}}{k!} \exp (-\lambda t) \tag{8}
\end{equation*}
$$

Equations 2 and 8 are two of the three "routes to a Poisson process". The third one is a little more qualitative in nature.

Given a particle placed in $\left[t_{1}, t_{2}\right]$, what is the probability it is placed in $\left[t_{1}, t\right]$ (notated by $\mathcal{P}(t)$) with $t_{1} \leq t \leq t_{2}$? We know (since it is explicitly placed in the interval), that $\mathcal{P}(0)=0$, $\mathcal{P}\left(t_{2}-t_{1}\right)=1$, and that \mathcal{P} is independent of t_{1} and t_{2}, but is a function of $t \ldots$

