Assignment VIII, PHYS 409 (Electromagnetism I) Fall 2019 Due Tuesday, October 29, 2019

- 1. The bound charge volume and surface densities ρ_b and σ_b typically arise due to the polarization of an initially uncharged dielectric. Therefore, though charge moves around a little bit, the net charge on the dielectric should remain zero. From the definitions of ρ_b and σ_b , mathematically demonstrate that the total enclosed bound charge in a neutral dielectric must be zero.
- 2. Two infinite conducting cylindrical shells have radii *a* and *b* (*a* < *b*). The outer cylinder carries total charge $-\lambda$ per unit length, while the inner cylinder carries total charge $+2\lambda$ per unit length. The space between the cylinders contains a dielectric with constant permittivity ϵ ($\epsilon > \epsilon_{\circ}$). Find the Displacement field everywhere and the Electric field everywhere.
- 3. Two concentric conducting spherical shells, with radii *a* and 3a, have charge +Q and -Q respectively. The space between the shells if filled with a linear dielectric with permittivity:

$$\epsilon(r) = \frac{3\epsilon_{\circ}a}{4a-r}$$

which varies with radial distance *r* from ϵ_{\circ} at r = a to $3\epsilon_{\circ}$ at r = 3a.

- a) Find the displacement field everywhere.
- b) Determine the bound charge density between the spherical shells.
- 4. A sphere of linear dielectric material has embedded in it a free charge density of the form $\rho_{\text{free}}(r) = \xi r^2$ (for r < R). Find the potential at the center of the sphere (relative to infinity) if its radius is *R* and the dielectric constant is κ (e.g. $\epsilon = \kappa \epsilon_{\circ}$).
- 5. A dielectric sphere of radius *a* and dielectric constant κ is placed between the plates of a very large parallel plate capacitor, so that the field everywhere inside the sphere (if the dielectric weren't there) would be uniform: $\vec{E} = E_o \hat{z}$. Find the electric field actually inside the dielectric sphere. Leave your answer in terms of E_o , κ , *a*, and/or any fundamental constants. *Hint: if* $\kappa = 1$, *your answer should be* $\vec{E} = E_o \hat{z}$!