Assignment VIII, PHYS 409 (Electromagnetism I) Fall 2019 Due Tuesday, October 29, 2019

1. The bound charge volume and surface densities ρ_{b} and σ_{b} typically arise due to the polarization of an initially uncharged dielectric. Therefore, though charge moves around a little bit, the net charge on the dielectric should remain zero. From the definitions of ρ_{b} and σ_{b}, mathematically demonstrate that the total enclosed bound charge in a neutral dielectric must be zero.
2. Two infinite conducting cylindrical shells have radii a and $b(a<b)$. The outer cylinder carries total charge $-\lambda$ per unit length, while the inner cylinder carries total charge $+2 \lambda$ per unit length. The space between the cylinders contains a dielectric with constant permittivity $\epsilon\left(\epsilon>\epsilon_{\circ}\right)$. Find the Displacement field everywhere and the Electric field everywhere.
3. Two concentric conducting spherical shells, with radii a and $3 a$, have charge $+Q$ and $-Q$ respectively. The space between the shells if filled with a linear dielectric with permittivity:

$$
\epsilon(r)=\frac{3 \epsilon_{\circ} a}{4 a-r}
$$

which varies with radial distance r from ϵ_{\circ} at $r=a$ to $3 \epsilon_{\circ}$ at $r=3 a$.
a) Find the displacement field everywhere.
b) Determine the bound charge density between the spherical shells.
4. A sphere of linear dielectric material has embedded in it a free charge density of the form $\rho_{\text {free }}(r)=$ ξr^{2} (for $r<R$). Find the potential at the center of the sphere (relative to infinity) if its radius is R and the dielectric constant is κ (e.g. $\epsilon=\kappa \epsilon_{\circ}$).
5. A dielectric sphere of radius a and dielectric constant κ is placed between the plates of a very large parallel plate capacitor, so that the field everywhere inside the sphere (if the dielectric weren't there) would be uniform: $\vec{E}=E_{\circ} \hat{z}$. Find the electric field actually inside the dielectric sphere. Leave your answer in terms of E_{\circ}, κ, a, and/or any fundamental constants. Hint: if $\kappa=1$, your answer should be $\vec{E}=E_{\circ} \hat{z}!$

