Assignment X, PHYS 409 (Electromagnetism I) Fall 2019 Due Thursday, November 14, 2019

1. I have to give you at least one Biot-Savart problem. I could give you a problem that can't be solved via other methods like Ampere's law or through multipole expansion - but those tend to be rather ugly. Alternatively, I could give you a problem with enough symmetry to solve via other methods but mandate your solution method. In this case, I will choose the latter option. You will be able to find solutions to this problem if you google, but most of them won't be using the method I mandate here. The online solutions may help you check your answer, but I specifically want you to do the problem in the way I outline below.
Consider a disk of radius R carrying total charge Q evenly distributed across its surface. The disk rotates with uniform angular velocity ω through its center in such a way that the angular velocity vector is in the \hat{z} direction. The charges on the surface stay tied to their locations relative to the disk, thus this rotation induces a current in the external non-rotating frame.
a) We'll walk you through this sequentially, so some of the steps will be pretty straightforward. What is the surface charge density σ on the disk as a function of Q and R ?
b) What is the surface current density \vec{K} ? (Remember that \vec{K} is a vector and work in cylindrical coordinates).
c) To calculate the magnetic field at some other location, we need to use the Biot-Savart law for surface currents

$$
\vec{B}(\vec{r})=\frac{\mu_{\circ}}{4 \pi} \oiint \frac{\vec{K} \times \hat{z}}{t^{2}} \mathrm{~d} a^{\prime}
$$

(In case you haven't seen it before, z is script-r; that's the best I can do with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$). What is the magnitude of $|\vec{K} \times \hat{\hat{y}}|$ in terms of Q, ω, s, R, and/or z for a point on the z axis?
d) In general, $\vec{K} \times \hat{\imath}$ has components in both the \hat{z} and \hat{s} direction. However, from symmetry, we know that only the \hat{z} component of $\vec{K} \times \hat{z}$ will need to be integrated since the other component will cancel from a symmetric point on the other side of the disk. What is the z component of $\vec{K} \times \hat{\imath}$ as a function of $Q, \omega s$, R, and/or z for a point on the z axis?
e) Given your methods so far, write down the appropriate double integral (with proper limits) that needs to be evaluated to find $\vec{B}(z)$ in terms of Q, ω, s, R, and/or z.
f) Evaluate the double integral developed in part (e) above to find $\vec{B}(z)$. You are not allowed to look anything up or use technology, but I will give you a little help:

$$
\int \frac{x^{3} \mathrm{~d} x}{\left(x^{2}+z^{2}\right)^{(n+1)}}=\frac{-1}{2(n-1)\left(x^{2}+z^{2}\right)^{n-1}}+\frac{z^{2}}{2 n\left(x^{2}+z^{2}\right)^{n}}
$$

for any real n. You may also assume $z \geq 0$. Simplify your answer.
g) Evaluate your answer to part (f) above for $z=0$ to find the magnetic field in the middle of the disk. (It won't be zero).
h) Find an approximate expression for $\vec{B}(z)$ as $z \rightarrow \infty$? (You can't just write 0 here!) Keep all terms involving powers of z less than or equal to inverse cubed.

