Assignment XI, PHYS 409 (Electromagnetism I) LAST ONE (WooHoo!) Fall 2019 Due Monday, December 2nd by 5 PM

Either email me a PDF of your solutions to LarsenML@cofc.edu by 5 PM on December 2nd or drop them off in my office (RITA 317) between noon and 5 PM on Monday, December 2nd. No late work will be accepted.

1. Current is distributed on the interior of a wire of infinite length and radius R through the relationship $J=$ $k s^{2} \hat{z}$ where \hat{z} is the direction along the wire's axis. The wire is made of a linear magnetic material with susceptibility χ_{m}.
a) What is $\vec{B}(s)$ everywhere?
b) What is $\vec{H}(s)$ everywhere?
c) What is $\vec{M}(s)$ everywhere?
d) Take the curl of M to find the bound current volume density \vec{J}_{b}.
e) Find the bound surface current density \vec{K}_{b}.
f) Integrate your answers to part (d) and (e) (over the appropriate volumes or surfaces) to find the net bound current flowing down the wire. (Briefly comment on your answer).
2. A fat wire, having radius a, carries a constant current I that is uniformly distributed over its cross sectional area. A narrow gap in the wire, of width $w \ll a$, forms a parallel plate capacitor. The gap is filled with an insulating material with permittivity ϵ and permeability μ. Find the magnetic field $\vec{B}(s)$ in the gap, with distance s from the central axis of the wire small compared to a, so that edge effects can be ignored.
3. A square loop of wire, side length a, lies midway between 2 long wires that are $5 a$ apart. Far away, the long wires are connected at both ends to form a loop. The loops are in the same plane, and 2 opposite sides of the small square loop are parallel to the long wires. A clockwise current is gradually increasing at a constant rate (i.e. $\frac{\mathrm{d} I}{\mathrm{~d} t}=k$) in the small square loop. Find the emf induced in the big loop and determine which way the current will flow.
